Module name:	Electrical Circuits 1
Module ID:	IS-FEE-10070W
Module type:	Class
Semester:	winter 2024/2025
Instructor:	Jarosław Forenc, j.forenc@pb.edu.pl

Class 06 (18.11.2024)

- 1. Measure the internal resistance of a **9V** battery using the following method:
 - Step 1: Use a multimeter to measure the battery's voltage, E.
 - Step 2: Measure the actual resistance of a R = 220 Ω resistor with a multimeter. Connect this resistor in series with the battery and then measure the voltage U across the resistor.
 - **Step 3:** Calculate the battery's internal resistance, **R**_{int}, using the following formula:

$$R_{int} = R \cdot \frac{E - U}{U}$$

2. Measure the actual resistances of the resistors: $R_1 = 220 \Omega$, $R_2 = 100 \Omega$, $R_3 = 470 \Omega$, $R_4 = 470 \Omega$. Using these measured values and **9V** battery, calculate the potential **V**_A with the **Node-Voltage Method**. Consider two cases: a) $R_{int} = 0 \Omega$, and b) R_{int} as the value calculated in problem no. 1. Build the circuit shown in the figure. Using a multimeter, measure the voltage between points V_A and V_B , and compare the measured results with the calculated values.

