(GROUP 2)

ELECTRICAL CIRCUITS 1 (IS-FEE-10070W) - TEST 1 (GROUP 3) 25.11.2024

ELECTRICAL CIRCUITS 1 (IS-FEE-10070W) - TEST 1 (GROUP 5) 25.11.2024

ELECTRICAL CIRCUITS 1 (IS-FEE-10070W) - TEST 1

Ροιντς PROBLEMS TO BE SOLVED INDIVIDUALLY 1. Calculate the equivalent resistance of circuit R₃ shown in the figure. R_4 $R_1 = 4 \Omega$, $R_2 = 4 \Omega$, $R_3 = 10 \Omega$, $R_4 = 15 \Omega$, R₁ R_5 $R_5 = 12 \Omega$, $R_6 = 8 \Omega$, $R_7 = 15 \Omega$, $R_8 = 5 \Omega$ 8 R₆ R_7 R_2 R₈ 2. The circuit shown in the figure uses resistors with a rated power of **0.5 W**. Determine whether this power rating is sufficient for the circuit to operate. If not, specify the required power rating for the individual resistors. The standard resistor power ratings are: 0.125 W, 0.25 W, 0.4 W, 0.5 W, 0.6 W, 0.75 W, 1 W, 2 W, 3 W, 5 W, 7 W. $R_1 = 100 \Omega$, $R_2 = 200 \Omega$, $R_3 = 400 \Omega$, $R_4 = 250 \Omega$, $R_5 = 50 \Omega$, $R_6 = 200 \Omega$, $J_1 = 0.1 A, E_3 = 2 V, E_6 = 1 V$ 20 E₃ R_4 R₁ E₆ R_6 R_2 R_5 R₃

Note: 21 points from both parts are required to pass the test.

PROBLEMS TO BE SOLVED INDIVIDUALLY POINTS 1. Calculate the equivalent resistance of circuit R_1 R₃ shown in the figure. $R_1 = 5 \Omega$, $R_2 = 6 \Omega$, $R_3 = 18 \Omega$, $R_4 = 6 \Omega$, R_4 R₅ $R_5 = 6 \Omega$, $R_6 = 15 \Omega$, $R_7 = 30 \Omega$, $R_8 = 15 \Omega$ R_2 R_6 8 R₈ R_7

2. The circuit shown in the figure uses resistors with a rated power of **1 W**. Determine whether this power rating is sufficient for the circuit to operate. If not, specify the required power rating for the individual resistors. The standard resistor power ratings are: 0.125 W, 0.25 W, 0.4 W, 0.5 W, 0.6 W, 0.75 W, 1 W, 2 W, 3 W, 5 W, 7 W.

 $R_1 = 100 \Omega$, $R_2 = 200 \Omega$, $R_3 = 400 \Omega$, $R_4 = 250 \Omega$, $R_5 = 50 \Omega$, $R_6 = 200 \Omega$, $J_1 = 0.2 A, E_3 = 2 V, E_6 = 2 V$

Note: 21 points from both parts are required to pass the test.

