Module name:	Electrical Circuits 2
Module ID:	IS-FEE-10085S
Module type:	Class
Semester:	summer 2024/2025
Instructor:	Jarosław Forenc, j.forenc@pb.edu.pl

Class 7 (15.04.2025)

 The line-to-line voltage of a balanced 3-phase distribution line is U_{LL} = 380 V rms. The load impedance per phase is <u>Z</u>_L = (30+j20) Ω. Calculate the line currents and the active power of the load for the following configurations of load impedance:
a wye-connected system, b) a delta-connected system.

2. In a 3-phase balanced Δ - Δ system, the source voltage is E_{ph} = 230 V rms. The impedance per phase <u>Z</u> = (8+j6) Ω . Find the line currents, active power of the load and wattmeters readings.

- 3. The three-phase electric heater consists of three heating coils Y-connected (Fig). The nominal power of the heater is $P_n = 3$ kW, and the nominal voltage $U_n = 230$ V rms. The heater has been damaged. After its repair the length of the first coil decreased by 5% and the length of the second coil by 10%.
 - a) calculate line currents before repairing the heater,
 - b) calculate line currents, the current in the neutral line and the power of the repaired heater,
 - c) calculate line currents and the power of the repaired heater, when the neutral line is not connected.

15.04.2025 Jarosław Forenc, PhD j.forenc@pb.edu.pl