
Python Programming 1Python Programming 1

BiałystokBiałystok University of TechnologyUniversity of Technology
Faculty of Electrical EngineeringFaculty of Electrical Engineering

Industry Digitization, semester Industry Digitization, semester IIII
Academic year 2024/2025Academic year 2024/2025

Lecture no. 01 (Lecture no. 01 (0505..0303.202.20255))

Jarosław Forenc, PhD

(CP1S02005E)(CP1S02005E)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 2/59

Basic informationBasic information
 Jarosław Forenc, PhDJarosław Forenc, PhD
 Bialystok University of Technology, Faculty of Electrical Engineering

Department of Electrotechnics, Power Electronics and Electrical
Power Engineering

 Wiejska 45D Street, 15-351 Bialystok
room: WE-204

 e-mail: j.forenc@pb.edu.pl
 http://jforenc.prv.pl/pprog1.html

 course materials

 Office hours (consultations):
 Monday, 08:30-10:00, room WE-204
 Wednedsay, 08:30-10:00, room WE-204

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 3/59

Module contentModule content
1. General structure of a Python program. Data types, keywords, and variable

names. Arithmetic operators and expressions, operator precedence,
mathematical functions. Comments. Comparison and logical operators,
logical expressions. Conditional statements if/elif/else.

2. Iterative statements: for and while, the range function, break and continue
statements.

3. Strings (text type), string operations (methods). Lists, tuples, dictionaries,
and sets.

4. Functions, defining functions, arguments and parameters, variable scope.
5. File operations, exceptions.
6. Object-oriented programming, objects, classes, inheritance.
7. Standard library, NumPy, Matplotlib, SciPy libraries. Jupyter Notebook

environment.
8. Final exam.

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 4/59

LiteratureLiterature
1. Ramalho L., Fluent Python: clear, concise, and effective programming.

Sebastopol, O'Reilly, 2022.
2. Matthes E., Python Crash Course, San Francisco, CA, No Starch Press, 2019.
3. Sweigart A., Automate the Boring Stuff with Python, San Francisco, CA, No

Starch Press, 2020.
4. Lutz M., Learning Python, Sebastopol, CA, O'Reilly Media, 2013.
5. https://www.python.org/doc/ - Python, documentation.

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 5/59

Learning outcomesLearning outcomes

A student who has passed the course knows and understands:

 Details: http://jforenc.prv.pl/pprog1.html or USOS system

The basis for passing the course (earning ECTS points) is
confirming that each of the assumed learning outcomes
has been achieved.

The basis for passing the course (earning ECTS points) is
confirming that each of the assumed learning outcomes
has been achieved.

EU1 the fundamental mechanisms of the Python language that
enable structural and object-oriented programming

EU2 basic programming constructs used in Python

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 6/59

Lecture assessmentLecture assessment
 The lecture assessment will be based on the results of a written test
 The test will take place during the last lecture of the semester
 The test score can range from 0 to 100 points
 The final grade is based on the points earned:

Points Grade Points Grade
91 - 100 5,0 61 - 70 3,5
81 - 90 4,5 51 - 60 3,0
71 - 80 4,0 0 - 50 2,0

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 7/59

TopicsTopics
 Basic information
 First program
 Variables, keywords, variable types
 print() and input() functions
 Arithmetic operators, operator precedence
 Constants and mathematical functions
 Comments
 Comparison and logical operators
 if, if-else, if-elif-else statements
 Conditional operator

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 8/59

Python Python -- InformationInformation
 Website: http://python.org
 Current stable version: 3.13.2 (04.02.2025)
 Operating systems: Windows, macOS, Linux,

Android, Unix, BSD and others
 Implementations: CPython, PyPy, Stackless Python, MicroPython,

CircuitPython, IronPython, Jython
 Logo:

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 9/59

Python Python -- First programFirst program
 A simple text file with a .py extension
 Example code:

 The print() function is used to display text or other data
in the console

 Running the program requires Python to be installed
 https://www.python.org/downloads/windows/
 Python 3.13.2: https://www.python.org/downloads/release/python-3132/
 Windows installer (64-bit) - file 27.3 MB

print("Hello, World!")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 10/59

Python Python -- InstallationInstallation

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 11/59

Python Python -- InstallationInstallation

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 12/59

Microsoft Visual Studio CodeMicrosoft Visual Studio Code
 Installation of the Python extension (Microsoft)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 13/59

Microsoft Visual Studio CodeMicrosoft Visual Studio Code
 We add a new file (with the .py extension)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 14/59

Microsoft Visual Studio CodeMicrosoft Visual Studio Code
 We enter the code and run the program

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 15/59

Python Python -- VariablesVariables
 Declaring variables involves assigning a value to a specific identifier
 The variable type is determined dynamically based on the assigned

value (there is no need for explicit type declaration)

 Multiple value assignments to variables in a single line

a = 10
b = "Hello"
c = 3.14
d = 5.2e-6
is_true = True

a, b, c = 10, 20, 30

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 16/59

Python Python -- Variable namesVariable names
 Rules and Guidelines:

 variable names can only contain letters, digits and the underscore (_)
 a variable name can start with a letter or an underscore but not

with a digit

 spaces are not allowed in variable names (however, underscores
can be used to separate words)

 avoid using Python keywords as variable names

temp2 _variable4 2temp my-variable

my_variable circle_area temp_celsius

print class input pass

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 17/59

Python Python -- KeywordsKeywords
 Keywords are written in lower case

False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass
break except in raise

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 18/59

Python Python -- Variable namesVariable names
 Rules and Guidelines :

 the variable name should be short but readable

 use lowercase letter l and uppercase letter O with caution, as they
can be easily mistaken for the digits 1 and 0

 variable names should be written in lowercase, as it is conventionally
accepted that uppercase letters are used for constants

 There is no special way to write or define constants

tc tempc temperature_in_celsius

MAX = 9999

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 19/59

Python Python -- print() functionprint() function

 objects - objects to be displayed; one or more arguments (text, numbers,
lists, variables, etc.)

 sep (optional) - separator between objects; by default, it is a single space
 end (optional) - line-ending character; by default, it is '\n' - each call

to print() ends with a newline; assigning end='' allows you to call print()
without moving the cursor to a new line

 file (optional) - the file object where the text should be written; by default,
this is standard output (sys.stdout)

 flush (optional) - a boolean value indicating whether to force the buffer
to be flushed; by default, it is False

print(*objects, sep=' ', end='\n', file=sys.stdout,
flush=False)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 20/59

Python Python -- print() functionprint() function

print("Hello world!")

Hello world!

print("Hello", "world", sep=", ", end="!\n")

Hello, world!

x = 10
y = 20
print("Value x is", x, "value y is", y)

Value x is 10 value y is 20

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 21/59

Python Python -- print() functions, fprint() functions, f--stringsstrings

name = "Kate"
age = 30
print(f"My name is {name} and I am {age} years old.")

My name is Kate and I am 40 years old.

x = 1.23456789
print(f"Value x = {x:.3f}")

Value x = 1.235

x = 1.2345
print(f"Value x = [{x:10.2f}]")

Value x = [1.23]

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 22/59

Python Python -- print() functions, fprint() functions, f--stringsstrings

x = 1.2345
print(f"Value x = [{x:>10.2f}]")

Value x = [1.23]

x = 1.2345
print(f"Value x = [{x:<10.2f}]")

Value x = [1.23]

x = 1.2345
print(f"Value x = [{x:^10.2f}]")

Value x = [1.23]

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 23/59

Python Python -- Data typesData types
 Integers:

 used number systems: decimal, binary, octal, hexadecimal

 displaying numbers in different number systems

w, x, y, z = 10, 0b10, 0o10, 0x10
print(w,x,y,z)

10 2 8 16

x = 255
print(f"Binary: {x:b}")
print(f"Octal: {x:o}")
print(f"Hexadecimal: {x:x}")
print(f"Hexadecimal: {x:X}")

Binary: 11111111
Octal: 377
Hexadecimal: ff
Hexadecimal: FF

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 24/59

Python Python -- Data typesData types
 Integers:

 when dividing integers, the result is always a floating-point number

 when writing numbers consisting of multiple digits, you can group
them using underscores

x = 4/2
print(x)

2.0

population = 8_019_000_000
print(population)

8019000000

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 25/59

Python Python -- Data typesData types
 Floating-point numbers:

 in the case of operations involving an integer and a real number,
the result is always a floating-point number

 sometimes, the results of operations on floating-point numbers
can be surprising

x = 2 + 2.0
print(x)

4.0

x = 0.2 + 0.1
print(x)

0.30000000000000004

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 26/59

Python Python -- Data typesData types
 String sequences :

 a string can be enclosed in either double quotes or single quotes

 The built-in function type() allows you to check the type of
the given argument

txt1 = "Kate has a laptop"
txt2 = 'John has a tablet'

print(type(32))
print(type(2.5))
print(type(3.1e-4))
print(type(True))
print(type("text"))
print(type('text'))

<class 'int'>
<class 'float'>
<class 'float'>
<class 'bool'>
<class 'str'>
<class 'str'>

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 27/59

Python Python -- input() functioninput() function

 the input() function is used to get data from the user via the keyboard
 prompt (optional) - text displayed before waiting for the user to enter

data; it provides information on what the user should type
 the input() function returns the data entered by the user as a string

(type str)
 when entering numbers, it is necessary to use a conversion function,

such as int() or float()

input(prompt)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 1 28/59

Python Python -- input() functioninput() function

name = input("What is your name: ")
print("Hello,", name)

What is your name: Paul
Hello, Paul

year = input("Enter your year of birth: ")
age = 2024 - year
print("You are", age, "years old")

Enter your year of birth: 2003
Traceback (most recent call last):

File "d:\myapp.py", line 2, in <module>
age = 2024 - year

~~~~~^~~~~
TypeError: unsupported operand type(s) for -: 'int' and 'str'



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 29/59

Python Python -- input() functioninput() function

year = int(input("Enter your year of birth: "))
age = 2024 - year
print("You are", age, "years old")

Enter your year of birth: 1997
You are 27 years old

Tf = float(input("Enter temperature [F]: "))
print(f"{Tf} [F] is {5/9*(Tf-32)} [C]")

Enter temperature [F]: 45.5
45.5 [F] is 7.5 [C]



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 30/59

Python Python -- Arithmetic operatorsArithmetic operators
 Addition (+): adds two numbers or joins two strings

 Subtraction (-): subtracts one number from another

x = 5
y = 3
print(x + y) # Will display: 8

x = 5
y = 3
print(x - y) # Will display: 2



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 31/59

Python Python -- Arithmetic operatorsArithmetic operators
 Multiplication (*): multiplies two numbers

 Division (/): divides one number by another, returns a floating 
point number

x = 5
y = 3
print(x * y) # Will display: 15

x = 5
y = 3
print(x / y) # Will display: 1.6666666666666667



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 32/59

Python Python -- Arithmetic operatorsArithmetic operators
 Integer division (//): Divides one number by another and returns 

the result as an integer, rounding down

 Remainder of Division (%): returns the remainder of dividing one 
number by another

x = 5
y = 3
print(x // y) # Will display: 1

x = 5
y = 3
print(x % y) # Will display: 2



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 33/59

Python Python -- Arithmetic operatorsArithmetic operators
 Power (**): Raises the first number to the power of the second

x = 5
y = 3
print(x ** y) # Will display: 125



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 34/59

Python Python -- Operator precedenceOperator precedence
 Operator precedence from highest to lowest:

 expressions in parentheses - expressions within parentheses 
are always evaluated first

 power (**) - the power operator has the highest precedence
 unary operators: negative (-) and positive (+) - these operators 

are evaluated before other arithmetic operators
 multiplication (*), division (/), integer division (//), and remainder 

of division (%) - these operators are evaluated before addition 
and subtraction

 addition (+) and subtraction (-) - the addition and subtraction 
operators have the lowest precedence

 Arithmetic operators are left-associative

x = 5 - 2 + 3 # (-)  (+)  (=) 



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 35/59

Python Python -- Augmented assignment operatorsAugmented assignment operators

Operator Example of statement Equivalent statement
+= x += 10 x = x + 10

-= x -= 10 x = x - 10

*= x *= 10 x = x * 10

/= x /= 10 x = x / 10

//= x //= 10 x = x // 10

%= x %= 10 x = x % 10

**= x **= 10 x = x ** 10



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 36/59

Python Python -- Mathematical constants and functionsMathematical constants and functions
 Mathematical constants and functions are available in 

the math module
 To use these functions and constants, you must first import 

the module

 Mathematical constants:
 math.pi - the constant p
 math.e - the constant e (the base of the natural logarithm)
 math.inf - infinity (positive)
 math.nan - NaN (Not a Number) - represents an undefined 

or unrepresentable numerical value

import math



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 37/59

Python Python -- Mathematical constants and functionsMathematical constants and functions
 Mathematical functions:

 sin(x) - calculates the sine of angle x (in radians)
 cos(x) - calculates the cosine of angle x (in radians)
 tan(x) - calculates the tangent of angle x (in radians)
 atan(x) - calculates the arctangent of x in radians, returning a result 

in the range [−p/2, p/2]
 sqrt(x) - calculates the square root of x
 exp(x) - calculates the exponential value of e raised to the power of x
 log(x) - calculates the natural logarithm of x
 log10(x) - calculates the base-10 logarithm of x
 pow(x, y) - calculates x raised to the power of y
 fabs(x) - returns the absolute value ∣x∣



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 38/59

Python Python -- ExampleExample

import math

# Reading the radius of a circle from the keyboard
radius = float(input("Enter the radius: "))

# Calculation of the area of a circle
area = math.pi * math.pow(radius,2)

# Calculation of the circumference of a circle
circumf = 2 * math.pi * radius

# Displaying the results
print(f"Circle area: {area:.2f}")
print(f"Circumf: {circumf:.2f}")

Enter the radius: 10
Circle area: 314.16
Circumf: 62.83



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 39/59

Python Python -- CommentsComments
 Comments are used to add descriptions or explanations 

in the source code of a program and are ignored during 
program execution

 They start with the # symbol and cover the entire line
 Everything after the # symbol is treated as a comment

# The code of the simplest program
print("Hello world!")



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 40/59

Python Python -- Comparison operatorsComparison operators

Operator Meaning Example Result
== equal to 2 == 2 True

!= not equal to 2 != 2 False

> greater than 2 > 5 False

< less than 2 < 5 True

>= greater than or equal to 2 >= 5 False

<= less than or equal to 2 <= 2 True

 as a result of a comparison, we get a value of True or False
 the values True and False can be assigned to variables

result = True
condition = False



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 41/59

Python Python -- Comparison operators (examples)Comparison operators (examples)

age = 17
print(age == 18) 

False

age = 17
print(age < 18) 

True

age = 17
print(age >= 15) 

True



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 42/59

Python Python -- Comparison operators (examples)Comparison operators (examples)

name = "John"
print(name != "John")

False

name = "John"
print(name == "John")

True

name = "John"
print(name > "Elizabeth")

True



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 43/59

Python Python -- Comparison operators (examples)Comparison operators (examples)

name = "John"
print(name == "john")

False

name = "John"
print(name.lower() == "john")

True

 the lower() method returns a string in which all uppercase letters 
have been converted to lowercase

 this method does not change the value of the variable name



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 44/59

Python Python -- Logical operatorsLogical operators

Operator Meaning Example

and returns True if both conditions are True x > 5 and x <= 7

or returns True if at least one of 
the conditions is True x < 3 or x >= 4

not returns the inverse of the logical value 
of the expression not x

age1 = 19
age2 = 17
print(age1 >= 18 and age2 >= 18)

False



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 45/59

Python Python -- Logical operators (examples)Logical operators (examples)

 you can use additional brackets in the condition, but it is not necessary

 example of using the or operator

age1 = 19
age2 = 17
print(age1 >= 18 or age2 >= 18)

True

age1 = 19
age2 = 17
print((age1 >= 18) and (age2 >= 18))



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 46/59

Python Python -- if statementif statement
 The simplest form of the if statement:

 if the result of conditional_test is True, then the action is performed; 
if it is False, then the action is not performed

 the indented code block specifies the actions performed after the if

 a code block consists of one or more consecutive lines of code with 
the same level of indentation

 indentation is typically: 4 spaces (recommended), 2 spaces, tab 

if conditional_test:
any_action

age = 19
if age >= 18:

print("You are of legal age")



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 47/59

Python Python -- if statementif statement
 where the indentation ends, the conditional block also ends:

age = 19
if age >= 18:

print("You are an adult")
print("You can go to the elections")

print("End")



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 48/59

Python Python -- ifif--else statementelse statement
 if-else statement syntax:

 if the result of conditional_test is True then only action1 is executed; 
if it is False then only action2 is executed

if conditional_test:
action1

else:
action2

number = int(input("Enter number: "))
if number % 2 == 0:

print(f"{number} – even number")
else:

print(f"{number} – odd number")



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 49/59

Python Python -- example (square root)example (square root)

import math

x = float(input("Enter number: "))
if x >= 0:

y = math.sqrt(x)
print("Square root:", y)

else:
print("Error! Negative number")

Enter number: 5
Square root: 2.23606797749979

Enter number: -3
Error! Negative number



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 50/59

Python Python -- example (square root)example (square root)

import math

x = float(input("Enter number: "))
if x >= 0:

y = math.sqrt(x)
print("Square root:", y)

else:
print("Error! Negative number")

Enter number: a
Traceback (most recent call last):
File "d:\MyApp.py", line 3, in <module>
x = float(input("Enter number: "))

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ValueError: could not convert string to float: 'a'



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 51/59

Python Python -- example (square root)example (square root)

import math

try:
x = float(input("Enter number: "))
if x >= 0:

y = math.sqrt(x)
print("Square root:", y)

else:
print("Error! Negative number")

except ValueError:
print("Error! Please enter a valid number")

Enter number: a
Error! Please enter a valid number



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 52/59

Python Python -- instrukcja ifinstrukcja if--elifelif--elseelse
 if-elif-else statement syntax:

 if the result of test1 is True then action1 is performed
 if the result of test1 is False then test2 is checked
 if the result of test2 is True then action2 is performed
 if the result of test2 is False then action3 is performed
 only one action can be performed

if test1:
acrion1

elif test2:
action2

else:
action3



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 53/59

Python Python -- example (BMI)example (BMI)
 BMI - coefficient obtained by dividing body weight in kilograms 

by the square of height in meters

 For adults:
 BMI < 18.5 - indicates underweight
 BMI  18.5 and BMI < 25 - indicates a correct body weight
 BMI  25 - indicates overweight



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 54/59

Python Python -- example (BMI)example (BMI)

weight = float(input("Enter weight [kg]: "))
height = float(input("Enter height [m]: "))
bmi = weight / (height * height)
print("BMI:", "{:.2f}".format(bmi))

if bmi < 18.5:
print("Underweight")

elif bmi >= 18.5 and bmi < 25:
print("Correct weight")

else:
print("Overweight")

Enter weight [kg]: 84
Enter height [m]: 1.85
BMI: 24.54
Correct weight



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 55/59

Python Python -- example (BMI)example (BMI)

weight = float(input("Enter weight [kg]: "))
height = float(input("Enter height [m]: "))
bmi = weight / (height * height)
print("BMI:", "{:.2f}".format(bmi))

if bmi < 18.5:
print("Underweight")

elif 18.5 <= bmi < 25:
print("Correct weight")

else:
print("Overweight")

 the condition checking whether bmi is within the range can also be 
written in another way
bmi >= 18.5 and bmi < 25     18.5 <= bmi < 25



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 56/59

Python Python -- example (BMI)example (BMI)

weight = float(input("Enter weight [kg]: "))
height = float(input("Enter height [m]: "))
bmi = weight / (height * height)
print("BMI:", "{:.2f}".format(bmi))

if bmi < 18.5:
print("Underweight")

else:
if bmi < 25:

print("Correct weight")
else:

print("Overweight")

 if statements can be nested



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 57/59

Python Python -- example (grades)example (grades)

pts = int(input("Enter number of points: "))

if pts < 51:
grade = 2.0

elif pts < 61:
grade = 3.0

elif pts < 71:
grade = 3.5

elif pts < 81:
grade = 4.0

elif pts < 91:
grade = 4.5

else:
grade = 5.0

print(f"Your grade: {grade:.1f}")

 the elif block can appear 
multiple times

 the final else block can be 
omitted



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 58/59

Python Python -- Conditional operatorConditional operator
 Syntax of the conditional operator (ternary expression):

 condition is the logical condition to be checked
 true_value is the value returned if the condition is met
 false_value is the value returned if the condition is not met

true_value if condition else false_value

x = int(input("Enter number: "))
txt = "Even" if x % 2 == 0 else "Odd"
print(txt)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 1 59/59

End of lecture no. 1End of lecture no. 1

Thank you for your attention!Thank you for your attention!


