
Python Programming 1Python Programming 1

BiałystokBiałystok University of TechnologyUniversity of Technology
Faculty of Electrical EngineeringFaculty of Electrical Engineering

Industry Digitization, semester Industry Digitization, semester IIII
Academic year 2024/2025Academic year 2024/2025

Lecture no. 02 (12.03.2025)Lecture no. 02 (12.03.2025)

Jarosław Forenc, PhD

(CP1S02005E)(CP1S02005E)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 2/33

TopicsTopics
 For loop, range() function
 Break and continue statements
 Lists and for loop
 While loop

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 3/33

Python Python -- for loopfor loop
 The for loop is used to iterate through elements of a collection

or another iterable object
 For loop syntax:

 element - a variable that takes the values of elements from
the collection during each iteration

 collection - a list, tuple, dictionary, set, or another iterable collection

 During each iteration, element takes the value of the next item
in the collection, and the specified instructions are executed
for that value

for element in collection:
code executed for each element

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 4/33

Python Python -- range() functionrange() function
 The range() function is used to generate a series of integers.

It is commonly used in iterations, especially in for loops

 start - integer from which the series begins, by default it has
the value 0 (optional parameter)

 stop - integer at which the series ends (not included in the series)
 step - step by which the series increases, by default it has

the value 1 (optional parameter)

 Returns a range object that represents a sequence of integers
 Does not generate a list immediately but creates an object that

produces numbers on demand

range(start, stop, step)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 5/33

Python Python -- for loop and range() functionfor loop and range() function
 generating integers in the range [0, 4]

0
1
2
3
4

for i in range(5):
print(i)

for i in range(5):
print(i, end = " ")

print()

0 1 2 3 4

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 6/33

Python Python -- for loop and range() functionfor loop and range() function
 generating integers in the range [2, 4]

 generating integers in the range [1, 10] with a step of 2

2 3 4

for i in range(2,5):
print(i, end = " ")

1 3 5 7 9

for i in range(1,11,2):
print(i, end = " ")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 7/33

Python Python -- for loop and range() functionfor loop and range() function
 invalid start and stop values will result in an empty sequence

 the step value can be negative

for i in range(9,0):
print(i, end = " ")

9 8 7 6 5 4 3 2 1

for i in range(9,0,-1):
print(i, end = " ")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 8/33

Python Python -- for loop and range() functionfor loop and range() function
 generating n+1 real numbers from the interval [start, stop]

 multiple instructions can be executed
inside a for loop (they must have
the same level of indentation)

start = 0
stop = 1
n = 10
step = (stop - start) / n
for i in range(n + 1):

value = start + i * step
print(value)

0.0
0.1
0.2
0.30000000000000004
0.4
0.5
0.6000000000000001
0.7000000000000001
0.8
0.9
1.0

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 9/33

Python Python -- for loop and break statementfor loop and break statement
 the break statement is used inside a for loop to stop its execution,

regardless of how many iterations have been completed

 Example: finding the first number divisible by both 3 and 7
in the range [1, 100]

The found number is: 21

for number in range(1, 101):
if number % 3 == 0 and number % 7 == 0:

print("The found number is:", number)
break

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 10/33

Python Python -- for loop and break statementfor loop and break statement
 the break statement is used inside a for loop to stop its execution,

regardless of how many iterations have been completed

 Example: finding the first number divisible by both 3 and 7
in the range [1, 100] (result without break)

The found number is: 21
The found number is: 42
The found number is: 63
The found number is: 84

for number in range(1, 101):
if number % 3 == 0 and number % 7 == 0:

print("The found number is:", number)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 11/33

Python Python -- for loop and continue statementfor loop and continue statement
 the continue statement is used to skip the current iteration of a for loop

and proceed to the next one

 Example: displaying only odd numbers in the range [1, 10]

1 3 5 7 9

for number in range(1, 11):
if number % 2 == 0:

continue
print(number, end = " ")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 12/33

Python Python -- for loop, most common errorsfor loop, most common errors
 missing colon (:)

PS C:\Users\jaros> python -u "d:\MyApp.py"
File "d:\MyApp.py", line 1
for i in range(5)

^
SyntaxError: expected ':'

for i in range(5)
print(i)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 13/33

Python Python -- for loop, most common errorsfor loop, most common errors
 no indentation for statements inside the for loop

PS C:\Users\jaros> python -u "d:\MyApp.py"
File "d:\MyApp.py", line 2
print(i)
^

IndentationError: expected an indented block
after 'for' statement on line 1

for i in range(5):
print(i)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 14/33

Python Python -- for loop, most common errorsfor loop, most common errors
 unnecessary indentation

0
End
1
End
2
End
3
End
4
End

for i in range(5):
print(i)
print("End")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 15/33

Python Python -- for loop, most common errorsfor loop, most common errors
 attempting to iterate over a non-iterable object

PS C:\Users\jaros> python -u "d:\MyApp.py"
Traceback (most recent call last):
File "d:\MyApp.py", line 2, in <module>
for i in value:

TypeError: 'int' object is not iterable

value = 10
for i in value:

print(i)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 16/33

Python Python -- nesting for loopsnesting for loops
 Example: multiplication table

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

for i in range(1, 11):
for j in range(1, 11):

result = i * j
print(f"{result:4}", end=" ")

print()

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 17/33

Python Python -- listslists
 List - a list is a data structure that stores a collection of elements

in a specific order
 o create a list, its elements are placed inside square brackets ([]),

separated by commas

 lists are dynamic - elements can be added or removed during program
execution

 lists can contain elements of different data types (numbers, strings,
other lists, tuples, dictionaries)

 list elements do not have to be related to each other

passive = ["resistor", "coil", "capacitor"]
my_list = [1, 2, 3, "a", "b", "c", 2.5]
active = []

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 18/33

Python Python -- listslists
 to display a list, you can use the print() function

['resistor', 'coil', 'capacitor']

passive = ["resistor", "coil", "capacitor"]
print(passive)

[1, 2, 3, 'a', 'b', 'c', 2.5]
[]

my_list = [1, 2, 3, "a", "b", "c", 2.5]
active = []
print(my_list)
print(active)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 19/33

Python Python -- listslists
 list elements are indexed, with the first element having index 0,

the second 1, and so on
 to access an element, use the list name followed by square brackets ([])

containing the element’s index

resistor
coil
The passive element is: resistor

passive = ["resistor", "coil", "capacitor"]
print(passive[0])
print(passive[1])
print(f"The passive element is: {passive[0]}")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 20/33

Python Python -- listslists
 the last element of a list has an additional index of -1

 index -2 refers to the second-to-last element of the list
 index -3 refers to the third-to-last element of the list

The last element is: capacitor

passive = ["resistor", "coil", "capacitor"]
print(f"The last element is: {passive[-1]}")

coil

passive = ["resistor", "coil", "capacitor"]
print(passive[-2])

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 21/33

Python Python -- listslists
 values of list elements can be modified

 adding an element to the end of the list - use the append() method

passive = ["resistor", "coil", "capacitor"]
passive[1] = "inductor"
print(passive)

['resistor', 'inductor', 'capacitor']

passive = ["resistor", "coil", "capacitor"]
passive.append("diode")
print(passive)

['resistor', 'coil', 'capacitor', 'diode']

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 22/33

Python Python -- listslists
 inserting an element at any position - use the insert() method

 removing a list element by index - use the del function

passive = ["resistor", "coil", "capacitor"]
passive.insert(0,"diode")
print(passive)

['diode', 'resistor', 'coil', 'capacitor']

passive = ["resistor", "coil", "capacitor"]
del passive[2]
print(passive)

['resistor', 'coil']

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 23/33

Python Python -- listslists
 removing and returning the last element - use the pop() method

passive = ["resistor", "coil", "capacitor"]
print(passive)
element = passive.pop()
print(f"Removed element: {element}")
print(passive)

['resistor', 'coil', 'capacitor']
Removed element: capacitor
['resistor', 'coil']

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 24/33

Python Python -- listslists
 the pop() method can also take an index as an argument to remove

a specific element

passive = ["resistor", "coil", "capacitor"]
print(passive)
element = passive.pop(1)
print(f"Removed element: {element}")
print(passive)

['resistor', 'coil', 'capacitor']
Removed element: coil
['resistor', 'capacitor']

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 25/33

Python Python -- listslists
 removing an element by value - use the remove() method

 the remove() method only deletes the first occurrence of the element

passive = ["resistor", "coil", "capacitor"]
print(passive)
passive.remove("resistor")
print(passive)

['resistor', 'coil', 'capacitor']
['coil', 'capacitor']

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 26/33

Python Python -- listslists
 removing all elements from a list - use the clear() method

 determining the size of a list - use the len() function

passive = ["resistor", "coil", "capacitor"]
passive.clear()
print(passive)

[]

passive = ["resistor", "coil", "capacitor"]
number = len(passive)
print(f"Number of elements in a list is: {number}")

Number of elements in a list is: 3

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 27/33

Python Python -- for loop and listsfor loop and lists
 displaying list elements - in the variable element, successive elements

of the passive list are stored

 in this method, we do not need to know the number of elements
in the list beforehand

passive = ["resistor", "coil", "capacitor"]
for element in passive:

print(element)

resistor
coil
capacitor

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 28/33

Python Python -- for loop and listsfor loop and lists
 by using the enumerate() function, we can obtain the indexes of list

elements

passive = ["resistor", "coil", "capacitor"]
for index, element in enumerate(passive):

print(f"Index: {index}, Value: {element}")

Index: 0, Value: resistor
Index: 1, Value: coil
Index: 2, Value: capacitor

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 29/33

Python Python -- for loop and listsfor loop and lists
 creating a list of numbers using the range() function

numbers = list(range(1,10))
for nr in numbers:

print(nr)

1
2
3
4
5
6
7
8
9

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 30/33

Python Python -- while loopwhile loop
 The while loop is used to execute a block of code as long as

the condition is met (evaluates to True)
 Syntax of the while loop:

 Example:

while condition:
code executed as long as the condition is true

number = 1
while number <= 5:

print(number)
number = number + 1

1
2
3
4
5

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 31/33

Python Python -- while loop and break statementwhile loop and break statement
 the break statement is used inside a while loop to terminate its

execution

 Example: Finding the first number divisible by both 3 and 7
in the range [1, 100]

The found number is: 21

number = 1
while number <= 100:

if number % 3 == 0 and number % 7 == 0:
print("The found number is:", number)
break

number += 1

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 32/33

Python Python -- while loop and continue statementwhile loop and continue statement
 the continue statement is used to skip the current iteration of the while

loop and return to the beginning of the loop

 Example: displaying only odd numbers from the range [1, 10]

1 3 5 7 9

number = 0
while number < 10:

number = number + 1
if number % 2 == 0:

continue
print(number, end = " ")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 33/33

End of lecture no. 2End of lecture no. 2

Thank you for your attention!Thank you for your attention!

