
Python Programming 1Python Programming 1

BiałystokBiałystok University of TechnologyUniversity of Technology
Faculty of Electrical EngineeringFaculty of Electrical Engineering

Industry Digitization, semester Industry Digitization, semester IIII
Academic year 2024/2025Academic year 2024/2025

Lecture no. 02 (12.03.2025)Lecture no. 02 (12.03.2025)

Jarosław Forenc, PhD

(CP1S02005E)(CP1S02005E)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 2/33

TopicsTopics
 For loop, range() function
 Break and continue statements
 Lists and for loop
 While loop

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 3/33

Python Python -- for loopfor loop
 The for loop is used to iterate through elements of a collection

or another iterable object
 For loop syntax:

 element - a variable that takes the values of elements from
the collection during each iteration

 collection - a list, tuple, dictionary, set, or another iterable collection

 During each iteration, element takes the value of the next item
in the collection, and the specified instructions are executed
for that value

for element in collection:
code executed for each element

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 4/33

Python Python -- range() functionrange() function
 The range() function is used to generate a series of integers.

It is commonly used in iterations, especially in for loops

 start - integer from which the series begins, by default it has
the value 0 (optional parameter)

 stop - integer at which the series ends (not included in the series)
 step - step by which the series increases, by default it has

the value 1 (optional parameter)

 Returns a range object that represents a sequence of integers
 Does not generate a list immediately but creates an object that

produces numbers on demand

range(start, stop, step)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 5/33

Python Python -- for loop and range() functionfor loop and range() function
 generating integers in the range [0, 4]

0
1
2
3
4

for i in range(5):
print(i)

for i in range(5):
print(i, end = " ")

print()

0 1 2 3 4

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 6/33

Python Python -- for loop and range() functionfor loop and range() function
 generating integers in the range [2, 4]

 generating integers in the range [1, 10] with a step of 2

2 3 4

for i in range(2,5):
print(i, end = " ")

1 3 5 7 9

for i in range(1,11,2):
print(i, end = " ")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 7/33

Python Python -- for loop and range() functionfor loop and range() function
 invalid start and stop values will result in an empty sequence

 the step value can be negative

for i in range(9,0):
print(i, end = " ")

9 8 7 6 5 4 3 2 1

for i in range(9,0,-1):
print(i, end = " ")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 8/33

Python Python -- for loop and range() functionfor loop and range() function
 generating n+1 real numbers from the interval [start, stop]

 multiple instructions can be executed
inside a for loop (they must have
the same level of indentation)

start = 0
stop = 1
n = 10
step = (stop - start) / n
for i in range(n + 1):

value = start + i * step
print(value)

0.0
0.1
0.2
0.30000000000000004
0.4
0.5
0.6000000000000001
0.7000000000000001
0.8
0.9
1.0

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 9/33

Python Python -- for loop and break statementfor loop and break statement
 the break statement is used inside a for loop to stop its execution,

regardless of how many iterations have been completed

 Example: finding the first number divisible by both 3 and 7
in the range [1, 100]

The found number is: 21

for number in range(1, 101):
if number % 3 == 0 and number % 7 == 0:

print("The found number is:", number)
break

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 10/33

Python Python -- for loop and break statementfor loop and break statement
 the break statement is used inside a for loop to stop its execution,

regardless of how many iterations have been completed

 Example: finding the first number divisible by both 3 and 7
in the range [1, 100] (result without break)

The found number is: 21
The found number is: 42
The found number is: 63
The found number is: 84

for number in range(1, 101):
if number % 3 == 0 and number % 7 == 0:

print("The found number is:", number)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 11/33

Python Python -- for loop and continue statementfor loop and continue statement
 the continue statement is used to skip the current iteration of a for loop

and proceed to the next one

 Example: displaying only odd numbers in the range [1, 10]

1 3 5 7 9

for number in range(1, 11):
if number % 2 == 0:

continue
print(number, end = " ")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 12/33

Python Python -- for loop, most common errorsfor loop, most common errors
 missing colon (:)

PS C:\Users\jaros> python -u "d:\MyApp.py"
File "d:\MyApp.py", line 1
for i in range(5)

^
SyntaxError: expected ':'

for i in range(5)
print(i)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 13/33

Python Python -- for loop, most common errorsfor loop, most common errors
 no indentation for statements inside the for loop

PS C:\Users\jaros> python -u "d:\MyApp.py"
File "d:\MyApp.py", line 2
print(i)
^

IndentationError: expected an indented block
after 'for' statement on line 1

for i in range(5):
print(i)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 14/33

Python Python -- for loop, most common errorsfor loop, most common errors
 unnecessary indentation

0
End
1
End
2
End
3
End
4
End

for i in range(5):
print(i)
print("End")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 15/33

Python Python -- for loop, most common errorsfor loop, most common errors
 attempting to iterate over a non-iterable object

PS C:\Users\jaros> python -u "d:\MyApp.py"
Traceback (most recent call last):
File "d:\MyApp.py", line 2, in <module>
for i in value:

TypeError: 'int' object is not iterable

value = 10
for i in value:

print(i)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 16/33

Python Python -- nesting for loopsnesting for loops
 Example: multiplication table

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100

for i in range(1, 11):
for j in range(1, 11):

result = i * j
print(f"{result:4}", end=" ")

print()

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 17/33

Python Python -- listslists
 List - a list is a data structure that stores a collection of elements

in a specific order
 o create a list, its elements are placed inside square brackets ([]),

separated by commas

 lists are dynamic - elements can be added or removed during program
execution

 lists can contain elements of different data types (numbers, strings,
other lists, tuples, dictionaries)

 list elements do not have to be related to each other

passive = ["resistor", "coil", "capacitor"]
my_list = [1, 2, 3, "a", "b", "c", 2.5]
active = []

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 18/33

Python Python -- listslists
 to display a list, you can use the print() function

['resistor', 'coil', 'capacitor']

passive = ["resistor", "coil", "capacitor"]
print(passive)

[1, 2, 3, 'a', 'b', 'c', 2.5]
[]

my_list = [1, 2, 3, "a", "b", "c", 2.5]
active = []
print(my_list)
print(active)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 19/33

Python Python -- listslists
 list elements are indexed, with the first element having index 0,

the second 1, and so on
 to access an element, use the list name followed by square brackets ([])

containing the element’s index

resistor
coil
The passive element is: resistor

passive = ["resistor", "coil", "capacitor"]
print(passive[0])
print(passive[1])
print(f"The passive element is: {passive[0]}")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 20/33

Python Python -- listslists
 the last element of a list has an additional index of -1

 index -2 refers to the second-to-last element of the list
 index -3 refers to the third-to-last element of the list

The last element is: capacitor

passive = ["resistor", "coil", "capacitor"]
print(f"The last element is: {passive[-1]}")

coil

passive = ["resistor", "coil", "capacitor"]
print(passive[-2])

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 21/33

Python Python -- listslists
 values of list elements can be modified

 adding an element to the end of the list - use the append() method

passive = ["resistor", "coil", "capacitor"]
passive[1] = "inductor"
print(passive)

['resistor', 'inductor', 'capacitor']

passive = ["resistor", "coil", "capacitor"]
passive.append("diode")
print(passive)

['resistor', 'coil', 'capacitor', 'diode']

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 22/33

Python Python -- listslists
 inserting an element at any position - use the insert() method

 removing a list element by index - use the del function

passive = ["resistor", "coil", "capacitor"]
passive.insert(0,"diode")
print(passive)

['diode', 'resistor', 'coil', 'capacitor']

passive = ["resistor", "coil", "capacitor"]
del passive[2]
print(passive)

['resistor', 'coil']

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 23/33

Python Python -- listslists
 removing and returning the last element - use the pop() method

passive = ["resistor", "coil", "capacitor"]
print(passive)
element = passive.pop()
print(f"Removed element: {element}")
print(passive)

['resistor', 'coil', 'capacitor']
Removed element: capacitor
['resistor', 'coil']

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 24/33

Python Python -- listslists
 the pop() method can also take an index as an argument to remove

a specific element

passive = ["resistor", "coil", "capacitor"]
print(passive)
element = passive.pop(1)
print(f"Removed element: {element}")
print(passive)

['resistor', 'coil', 'capacitor']
Removed element: coil
['resistor', 'capacitor']

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 25/33

Python Python -- listslists
 removing an element by value - use the remove() method

 the remove() method only deletes the first occurrence of the element

passive = ["resistor", "coil", "capacitor"]
print(passive)
passive.remove("resistor")
print(passive)

['resistor', 'coil', 'capacitor']
['coil', 'capacitor']

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 26/33

Python Python -- listslists
 removing all elements from a list - use the clear() method

 determining the size of a list - use the len() function

passive = ["resistor", "coil", "capacitor"]
passive.clear()
print(passive)

[]

passive = ["resistor", "coil", "capacitor"]
number = len(passive)
print(f"Number of elements in a list is: {number}")

Number of elements in a list is: 3

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 27/33

Python Python -- for loop and listsfor loop and lists
 displaying list elements - in the variable element, successive elements

of the passive list are stored

 in this method, we do not need to know the number of elements
in the list beforehand

passive = ["resistor", "coil", "capacitor"]
for element in passive:

print(element)

resistor
coil
capacitor

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 28/33

Python Python -- for loop and listsfor loop and lists
 by using the enumerate() function, we can obtain the indexes of list

elements

passive = ["resistor", "coil", "capacitor"]
for index, element in enumerate(passive):

print(f"Index: {index}, Value: {element}")

Index: 0, Value: resistor
Index: 1, Value: coil
Index: 2, Value: capacitor

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 29/33

Python Python -- for loop and listsfor loop and lists
 creating a list of numbers using the range() function

numbers = list(range(1,10))
for nr in numbers:

print(nr)

1
2
3
4
5
6
7
8
9

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 30/33

Python Python -- while loopwhile loop
 The while loop is used to execute a block of code as long as

the condition is met (evaluates to True)
 Syntax of the while loop:

 Example:

while condition:
code executed as long as the condition is true

number = 1
while number <= 5:

print(number)
number = number + 1

1
2
3
4
5

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 31/33

Python Python -- while loop and break statementwhile loop and break statement
 the break statement is used inside a while loop to terminate its

execution

 Example: Finding the first number divisible by both 3 and 7
in the range [1, 100]

The found number is: 21

number = 1
while number <= 100:

if number % 3 == 0 and number % 7 == 0:
print("The found number is:", number)
break

number += 1

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 32/33

Python Python -- while loop and continue statementwhile loop and continue statement
 the continue statement is used to skip the current iteration of the while

loop and return to the beginning of the loop

 Example: displaying only odd numbers from the range [1, 10]

1 3 5 7 9

number = 0
while number < 10:

number = number + 1
if number % 2 == 0:

continue
print(number, end = " ")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 2 33/33

End of lecture no. 2End of lecture no. 2

Thank you for your attention!Thank you for your attention!

