Python Programming 1

(CP1S02005E)

Biatystok University of Technology

Faculty of Electrical Engineering

Industry Digitization, semester II
Academic year 2024/2025

Lecture no. 02 (12.03.2025)

Jarostaw Forenc, PhD

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 2/33

Topics

m For loop, range() function
m Break and continue statements
m Lists and for loop

= While loop

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 3/33

Python - for loop

m The for loop is used to iterate through elements of a collection
or another iterable object

m For loop syntax:

for element in collection:
code executed for each element

O element - a variable that takes the values of elements from
the collection during each iteration

o collection - a list, tuple, dictionary, set, or another iterable collection

m During each iteration, element takes the value of the next item

in the collection, and the specified instructions are executed
for that value

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 4/33

Python - range() function

m The range() function is used to generate a series of integers.
It is commonly used in iterations, especially in for loops

range(start, stop, step)

o start - integer from which the series begins, by default it has
the value 0 (optional parameter)

o stop - integer at which the series ends (not included in the series)
O step - step by which the series increases, by default it has
the value 1 (optional parameter)

m Returns a range object that represents a sequence of integers

m Does not generate a list immediately but creates an object that
produces numbers on demand

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 5/33

Python - for loop and range() function

O generating integers in the range [0, 4]

for i in range(5): for i in range(5):
print(i) print(i, end = " ")
print()

012 3 4

_ W IhRr O

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 6/33

Python - for loop and range() function

O generating integers in the range [2, 4]

for i in range(2,5):
print(i, end = " ")

2 3 4

O generating integers in the range [1, 10] with a step of 2

for i in range(1,11,2):
print(i, end = " ")

135709

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 7/33

Python - for loop and range() function

o invalid start and stop values will result in an empty sequence

for i in range(9,0):
print(i, end = " ")

o the step value can be negative

for i in range(9,0,-1):
print(i, end = " ")

987654321

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 8/33

Python - for loop and range() function

O generating n+1 real numbers from the interval [start, stop]

start = 0 0.0
stop = 1 0.1
n = 10 0.2
step = (stop - start) / n 0.30000000000000004
for i in range(n + 1): 0.4
value = start + i * step 0.5
print(value) 0.6000000000000001
0.7000000000000001
o multiple instructions can be executed g:g
inside a for loop (they must have 1.0
the same level of indentation)

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 9/33

Python - for loop and break statement

o the break statement is used inside a for loop to stop its execution,
regardless of how many iterations have been completed

o Example: finding the first number divisible by both 3 and 7
in the range [1, 100]

for number in range(l, 101):

if number % 3 == 0 and number % 7 ==
print("The found number is:", number)
break

The found number is: 21

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 10/33

Python - for loop and break statement

o the break statement is used inside a for loop to stop its execution,
regardless of how many iterations have been completed

o Example: finding the first number divisible by both 3 and 7
in the range [1, 100] (result without break)

for number in range(1l, 101):
if number % 3 == 0 and number % 7 ==
print("The found number is:", number)

The found number is: 21
The found number is: 42
The found number is: 63
The found number is: 84

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 11/33

Python - for loop and continue statement

o the continue statement is used to skip the current iteration of a for loop
and proceed to the next one

o Example: displaying only odd numbers in the range [1, 10]

for number in range(1, 11):
if number % 2 ==
continue
print(number, end = " ")

135709

Python Programming 1 (CP1S02005E)

Academic year 2024/2025, Lecture no. 2

Python - for loop, most common errors

O

Jarostaw Forenc, PhD

12/33

missing colon (:)

for i in range(5)
print(i)

PS C:\Users\jaros> python -u "d:\MyApp.py"
File "d:\My2pp.py", line 1
for i in range(5)

A

SyntaxError: expected ':'

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 13/33

Python - for loop, most common errors

O no indentation for statements inside the for loop

for i in range(5):
print(i)

PS C:\Users\jaros> python -u "d:\MyApp.py"
File "d:\My2App.py", line 2
print (i)
A

IndentationError: expected an indented block
after 'for' statement on line 1

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 14/33

Python - for loop, most common errors

O unnecessary indentation

for i in range(5):
print(i)
print("End")

End

End

End

End

End

Python Programming 1 (CP1S02005E)

Academic year 2024/2025, Lecture no. 2

Python - for loop, most common errors

O

Jarostaw Forenc, PhD

15/33

attempting to iterate over a non-iterable object

value = 10
for i in value:
print(i)

PS C:\Users\jaros> python -u "d:\MyApp.py"
Traceback (most recent call last):
File "d:\MyApp.py", line 2, in <module>
for i in value:
TypeError: 'int' object is not iterable

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 2

Jarostaw Forenc, PhD
16/33

Python - nesting for loops

0 Example: multiplication table

for i in range(1, 11):
for j in range(1, 11):
result = 1 * j
print(f"{result:4}", end=" ")
print()

3 4 5 6 7 8
6 8 10 12 14 16
9 12 15 18 21 24
12 16 20 24 28 32
15 20 25 30 35 40
12 18 24 30 36 42 48
14 21 28 35 42 49 56
16 24 32 40 48 56 64
18 27 36 45 54 63 72
20 30 40 50 60 70 80

CwVWwouJoUldbd WDNRH
=

=

18
277
36
45
54
63
72
81
90

10
20
30
40
50
60
70
80
90
100

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 17/33

Python - lists

m List - alist is a data structure that stores a collection of elements
in a specific order

O

o create a list, its elements are placed inside square brackets ([]),
separated by commas

passive = ["resistor", "coil", "capacitor"]
my_list - [1’ 2’ 3’ llall’ llbll’ "C"’ 2.5]
active = []

lists are dynamic - elements can be added or removed during program
execution

lists can contain elements of different data types (humbers, strings,
other lists, tuples, dictionaries)

list elements do not have to be related to each other

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 18/33

Python - lists

o to display a list, you can use the print() function

passive = ["resistor", "coil", "capacitor"]
print(passive)

[' resistor', 'coil', 'capacitor']

my list = [1, 2, 3, "a", "b", "c", 2.5]
active = []

print(my_list)

print(active)

[1, 2, 3, 'a', 'b', 'e¢', 2.5]
[]

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 19/33

Python - lists

o list elements are indexed, with the first element having index 0,
the second 1, and so on

0 to access an element, use the list name followed by square brackets ([])
containing the element’s index

passive = ["resistor", "coil", "capacitor"]
print(passive[0])

print(passive[1])

print(f"The passive element is: {passive[0]}")

resistor
coil
The passive element is: resistor

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD

Academic year 2024/2025, Lecture no. 2

20/33

Python - lists

o the last element of a list has an additional index of -1

passive = ["resistor", "coil", "capacitor"]
print(f"The last element is: {passive[-1]}")

The last element is: capacitor

O index -2 refers to the second-to-last element of the list
O index -3 refers to the third-to-last element of the list

passive = ["resistor", "coil", "capacitor"]
print(passive[-2])

coil

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 21/33

Python - lists

o values of list elements can be modified

passive = ["resistor", "coil", "capacitor"]
passive[1l] = "inductor"
print(passive)

['resistor', 'inductor', 'capacitor']

o adding an element to the end of the list - use the append() method

passive = ["resistor", "coil", "capacitor"]
passive.append("diode")
print(passive)

[' resistor', 'coil', 'capacitor', 'diode']

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD

Academic year 2024/2025, Lecture no. 2 22/33

Python - lists

O inserting an element at any position - use the insert() method

passive = ["resistor", "coil", "capacitor"]
passive.insert(0,"diode")
print(passive)

['diode', 'resistor', 'coil', 'capacitor']

O removing a list element by index - use the del function

passive = ["resistor", "coil", "capacitor"]
del passive[2]
print(passive)

['resistor', 'coil']

Python Programming 1 (CP1S02005E)

Academic year 2024/2025, Lecture no. 2

Jarostaw Forenc, PhD

23/33

Python - lists

O

removing and returning the last element - use the pop() method

passive = ["resistor", "coil", "capacitor"]
print(passive)

element = passive.pop()

print(f"Removed element: {element}")
print(passive)

Removed element: capacitor

[' resistor', 'coil', 'capacitor']

['resistor', 'coil']

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 2

Jarostaw Forenc, PhD
24/33

Python - lists

o the pop() method can also take an index as an argument to remove

a specific element

passive = ["resistor", "coil", "capacitor"]
print(passive)

element = passive.pop(1)

print(f"Removed element: {element}")
print(passive)

[' resistor', 'coil', 'capacitor']
Removed element: coil
[' resistor', 'capacitor']

Python Programming 1 (CP1S02005E)

Academic year 2024/2025, Lecture no. 2

Python - lists

O

Jarostaw Forenc, PhD
25/33

removing an element by value - use the remove() method

passive = ["resistor", "coil", "capacitor"]

print(passive)

passive.remove("resistor")

print(passive)

[' resistor',

['coil', 'capacitor']

'coil',

'capacitor']

O

the remove() method only deletes the first occurrence of the element

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD

Academic year 2024/2025, Lecture no. 2

26/33

Python - lists

o removing all elements from a list - use the clear() method

passive = ["resistor", "coil", "capacitor"]
passive.clear()
print(passive)

[]

o determining the size of a list - use the len() function

passive = ["resistor", "coil", "capacitor"]
number = len(passive)
print(f"Number of elements in a list is: {number}")

Number of elements in a list is: 3

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 27/33

Python - for loop and lists

o displaying list elements - in the variable element, successive elements
of the passive list are stored

passive = ["resistor", "coil", "capacitor"]
for element in passive:
print(element)

resistor
coil
capacitor

o in this method, we do not need to know the number of elements
in the list beforehand

Python Programming 1 (CP1S02005E)

Academic year 2024/2025, Lecture no. 2

Jarostaw Forenc, PhD

28/33

Python - for loop and lists

O

by using the enumerate() function, we can obtain the indexes of list

elements

passive = ["resistor", "coil", "capacitor"]
for index, element in enumerate(passive):
print(f"Index: {index}, Value: {element}")

Index: 0, Value: resistor
Index: 1, Value: coil
Index: 2, Value: capacitor

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 29/33

Python - for loop and lists

O creating a list of numbers using the range() function

numbers = list(range(1,10))
for nr in numbers:
print(nr)

OoJdJouUbdWDMNDR

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 30/33

Python - while loop

m The while loop is used to execute a block of code as long as
the condition is met (evaluates to True)

m Syntax of the while loop:

while condition:
code executed as long as the condition is true

o Example:

number = 1

while number <= 5:
print(number)
number = number + 1

o WPNhRKR

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 31/33

Python - while loop and break statement

o the break statement is used inside a while loop to terminate its
execution

o Example: Finding the first number divisible by both 3 and 7
in the range [1, 100]

number = 1
while number <= 100:

if number % 3 == 0 and number % 7 ==
print("The found number is:", number)
break

number += 1

The found number is: 21

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 2

Jarostaw Forenc, PhD
32/33

Python - while loop and continue statement

o the continue statement is used to skip the current iteration of the while

loop and return to the beginning of the loop

o Example: displaying only odd numbers from the range [1, 10]

number = 0
while number < 10:
number = number + 1
if number % 2 ==
continue
print(number, end = " ")

135709

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 2 33/33

End of lecture no. 2

Thank you for your attention!

