Python Programming 1

(CP1S02005E)

Biatystok University of Technology

Faculty of Electrical Engineering

Industry Digitization, semester II
Academic year 2024/2025

Lecture no. 03 (19.03.2025)

Jarostaw Forenc, PhD

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 3

Topics
m Strings
o implementation, notation
element indexing
o methods
o string comparison
o using the + and * operators

Jarostaw Forenc, PhD
2/27

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 3 3/27

Python - strings

m A text string is a sequence of characters used to store textual
information (data)

m A string can be enclosed in double quotes or single quotes

stringl = "Hello, world!"
string2 = 'Hello, world!'’
string3 = """Hello, world!"""
string4 = '''Hello, world!'"’

o when enclosed with triple quotes, a string can span multiple lines
of code

m Text strings are objects of the str class, more information:
o https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 3

Jarostaw Forenc, PhD
4/27

Python - strings

O you cannot use both double and single quotes at the same time

to enclose a string

stringl = "Hello, world!'’

File "d:\MyApp.py", line 1
stringl = "Hello, world!’

N

SyntaxError: unterminated string literal (detected at line 1)

stringl = 'Hello, world!"

File "d:\MyApp.py", line 1
stringl = 'Hello, world!"

N

SyntaxError: unterminated string literal (detected at line 1)

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 3 5/27

Python - strings

o other quotation marks (single/double quotes) can be used for
quotations within a string

"Course 'C Programming' (CP1S01005)"
"Course "Python Programming 1" (CP1S02005)'

codel
code?2

o including a double quote (") inside a string enclosed by double quotes
requires adding a backslash (\)

codel = "Course \"C Programming\" (CP1S©1005)"

o including a single quote (') inside a string enclosed by single quotes
also requires adding a backslash (\)

code2 = 'Course \'Python Programming 1\' (CP1S02005)"

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 3
|

Jarostaw Forenc, PhD
6/27

Python - strings

O example of an apostrophe in a string

textl =
text2 =

"Ampere's Law"
"It's a beautiful day"

print(textl)
print(text2)

Ampere's Law
It's a beautiful day

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 3 7/27
e

Python - strings (element indexing)

O a string is a sequential type, meaning that access to any element
is possible by specifying its index

text = "Paul has a dog"

0 1 2 3 4 9 6 7 8 9 10 11 12 13 <«— index

index from
-3 -2 4 < the end

o indexing takes the form: string_name[index]

text = "Paul has a dog"

print(f"1st char from the beginning: {text[0]}") P
print(f"2nd char form the begening: {text[1]}") a
print(f"2nd char from the end: {text[-2]1}") o

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 3

Jarostaw Forenc, PhD

8/27

Python - strings (element indexing)

O using a colon (:) to create element indexing

list[start_index : end_index : step]

0o each index can be omitted, in which case the default values are

assumed:

= start_index: O (index of the first element)

= end_index: len(lista) (index after the last element)
= step: 1

text = "Paul has a dog"
print(f"First three characters: {text[0:3]}") # o0,1,2

First three characters: Pau

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 3 9/27

Python - strings (element indexing)

text = "Paul has a dog"
print(f"First three characters: {text[:3]}")
print(f"Text without the first three chars: {text[3:]}")

First three characters: Pau
Text without the first three chars: 1 has a dog

text = "Paul has a dog"

print(f"Last character: {text[-1]}")

print(f"Last two characters: {text[-2:]}")
print(f"Without the last two characters: {text[0:-2]}")

Last character: g
Last two characters: og
Without the last two characters: Paul has a d

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 3 10/27

Python - strings (element indexing)

text = "Paul has a dog"
print(f"Every 2nd element from the first: {text[::2]}")
print(f"Every 2nd element from the second: {text[1::2]}")

Every 2nd element from the first: Pua o
Every 2nd element from the second: alhsadg

text = "Paul has a dog"
print(f"Reversed text: {text[::-1]}")

Reversed text: god a sah luaP

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 3 11/27

Python - strings (methods)

o the len() functions - returns the length of a text string (number
of characters)

text = input("Enter text: ")
length = len(text)
print(f"Number of entered characters: {length}")

Enter text: Python Programming 1
Number of entered characters: 20

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 3

Python - strings (methods)

O

O

Jarostaw Forenc, PhD
12/27

the title() method - converts the first letter of each word to uppercase
(does not modify the original text)

text = "paul has a dog"
print(text.title())
print(text)

Paul Has A Dog
paul has a dog

permanent capitalization change

text = "paul has a dog"
text = text.title()
print(text)

Paul Has A Dog

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 3 13/27

Python - strings (methods)

o the upper() method - converts all lowercase letters to uppercase

text = "Paul Has a Dog"
print(text.upper())

PAUL HAS A DOG

o the lower() method - converts all uppercase letters to lowercase

text = "Paul Has a Dog"
print(text.lower())

paul has a dog

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 3 14/27

Python - strings (methods)

o the removeprefix() method - removes a prefix from a string (if it exists)

url = "https://we.pb.edu.pl”
url = url.removeprefix("https://")
print(url)

we.pb.edu.pl

o the removesuffix() method - removes a suffix from a string (if it exists)

fname = "grade_python.txt"
print(f"File name: {fname.removesuffix(".txt")}")

File name: grade_python

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 3 15/27

Python - strings (methods)

O

the Istrip() method - removes whitespace from the left side of the string
(beginning)

the rstrip() method - removes whitespace from the right side of the string
(end)

the strip() method - removes whitespace from both sides of the string
(beginning and end)

whitespace characters: spaces (" "), tabs ("\t"), newline characters ("\n")

text = " John Smith

print(f"[{text}]") [John Smith]
print(f"[{text.1lstrip()}]1") [John Smith]
print(f"[{text.rstrip()}]") [John Smith]
print(f"[{text.strip()}]") [John Smith]

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 3 16/27

Python - strings (methods)

o the lIstrip(), rstrip(), and strip() methods can take an argument specifying
a set of characters to remove

text = "###John Smiths##H#"

print(f"[{text}]")
print(f"[{text.1lstrip("#")}]")
print(f"[{text.rstrip("#")}]1")
print(f"[{text.strip("#")}]1")

[###John Smiths###]
[John Smiths###]
[###John Smiths]
[John Smiths]

Python Programming 1 (CP1S02005E)

Academic year 2024/2025, Lecture no. 3

Jarostaw Forenc, PhD

17/27

Python - strings (methods)

O

the startswith(prefix) method - returns True if the given string starts

with the specified prefix

text = "Hello world"”
if text.startswith("Hello"):
print("The string starts with: 'Hello'")
else:
print("The string does not start with: 'Hello'")

the endswith(suffix) method - returns True if the given string ends
with the specified suffix

text = "Hello world"”
if text.endswith("world"):
print("The string ends with: 'world'")
else:
print("The string does not ends with: 'world'")

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 3 18/27

Python - strings (methods)

o the count(substring) method - returns the number of occurrences of
a specified substring in the given string

text = "Paul has a dog"
cnt_a = text.count("a")
print(f"Number of occurrences of the letter 'a': {cnt_al}")

Number of occurrances of the letter 'a': 3

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 3 19/27

Python - strings (methods)

o the find(substring) method - searches for a specified substring in
the given string

o returns the index of the first occurrence of the substring or -1 if
the substring is not found

text = "Paul has a dog"
idx = text.find("dog")
if idx == -1:
print("Substring not found")
else:

print(f"Substring starts at index: {idx}")

Substring starts at index: 11

o the rfind(substring) method - returns the index of the last occurrence
of the substring in the string or -1 if the substring is not found

Python Programming 1 (CP1S02005E)

Academic year 2024/2025, Lecture no. 3
|

Jarostaw Forenc, PhD
20/27

Python - comparing strings

O

comparison operators can be used with strings

Operator Meaning Operator Meaning
== equal to I= not equal to
> greater than >= greater than or equal to
< less than <= less than or equal to

the result of a comparison is either True or False

else:

if pass

pass = input("Enter a password: ")
"123456":
print("This is the most popular password in the world")

print("The password is OK")

two strings are considered equal if they consist of the same characters

in the exact same positions

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 3 21/27

Python - comparing strings

o when comparing text, be mindful of letter case

name = input("What was Einstein's first name? ")
if name.lower() == "albert":

print("Correct answer!")
else:

print("Incorrect answer!")

What was Einstein's first name? Albert
Correct answer!

What was Einstein's first name? albert
Correct answer!

What was Einstein's first name? Albie
Incorrect answer!

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 3

Jarostaw Forenc, PhD
22/27

Python - strings (example)

o counting the number of digits in a string

text = (input("Enter text: "))
count = 0
for char in text:
if ord(char) >= 48 and ord(char) <= 57:
count = count + 1
print(f"The text contains {count} digits")

Enter text: asd58Dr4Hik2189
The text contains 7 digits

o the ord() function takes a single character (of type str) as an argument

and returns its corresponding Unicode numerical value

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 3

Jarostaw Forenc, PhD
23/27

Python - strings and operators: +, *

o the + operator is used to combine two strings into one

first_name = "John"

last_name = "Smith"

person = first name + " " + last_name
print(person)

John Smith

o the * operator is used to repeat a string a specified number of times

text = "<->"
new_text = text * 10
print(new_text)

C=2€=2<=2<=2C=2<=2<=>L=><=><L~>

Python Programming 1 (CP1S02005E)

Academic year 2024/2025, Lecture no. 3

Python - strings and lists

O

Jarostaw Forenc, PhD
24/27

the sort() method - sorts the elements in a list in alphabetical order;

the sorting is permanent (modifies the original list)

passive =

["resistor"”, "inductor", "capacitor"]
passive.sort()
print(passive)

['capacitor', 'inductor', 'resistor']

elements can also be sorted in reverse alphabetical order

passive =

["resistor"”, "capacitor", "inductor"]
passive.sort(reverse = True)
print(passive)

['resistor’,

"inductor', 'capacitor']

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 3 25/27
e

Python - strings and lists

o the sorted() function - sorts the elements in a list in alphabetical order;
does not modify the original list (returns a new sorted list)

passive = ["resistor", "inductor", "capacitor"]
print(passive)

print(sorted(passive))

print(passive)

['resistor', 'inductor', 'capacitor']
['capacitor', 'inductor', 'resistor']
['resistor', 'inductor ', 'capacitor']

o the sorted() function can also take the argument reverse=True for sorting
in reverse alphabetical order

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD

Academic year 2024/2025, Lecture no. 3

26/27

Python - strings and lists

O

the split(separator, maxsplit) method splits a string into fragments
(called tokens) based on a specified separator

separator (optional) - a character or string used as the delimiter;
by default, it splits at whitespace (spaces, tabs, newlines)

maxsplit (optional) - the maximum number of splits to perform

text = input("Enter text: ")
tokens = text.split()
print(tokens)

Enter text: Paul has a dog
['Paul’', 'has', 'a', 'dog']

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 3 27/27

End of lecture no. 3

Thank you for your attention!

