
Python Programming 1Python Programming 1

BiałystokBiałystok University of TechnologyUniversity of Technology
Faculty of Electrical EngineeringFaculty of Electrical Engineering

Industry Digitization, semester Industry Digitization, semester IIII
Academic year 2024/2025Academic year 2024/2025

Lecture no. 0Lecture no. 033 (1(199.03.2025).03.2025)

Jarosław Forenc, PhD

(CP1S02005E)(CP1S02005E)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 2/27

TopicsTopics
 Strings

 implementation, notation
 element indexing
 methods
 string comparison
 using the + and * operators

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 3/27

Python Python -- stringsstrings
 A text string is a sequence of characters used to store textual

information (data)
 A string can be enclosed in double quotes or single quotes

 when enclosed with triple quotes, a string can span multiple lines
of code

 Text strings are objects of the str class, more information:
 https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

string1 = "Hello, world!"
string2 = 'Hello, world!'

string3 = """Hello, world!"""
string4 = '''Hello, world!'''

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 4/27

Python Python -- stringsstrings
 you cannot use both double and single quotes at the same time

to enclose a string

string1 = "Hello, world!'

File "d:\MyApp.py", line 1
string1 = "Hello, world!'

^
SyntaxError: unterminated string literal (detected at line 1)

string1 = 'Hello, world!"

File "d:\MyApp.py", line 1
string1 = 'Hello, world!"

^
SyntaxError: unterminated string literal (detected at line 1)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 5/27

Python Python -- stringsstrings
 other quotation marks (single/double quotes) can be used for

quotations within a string

 including a double quote (") inside a string enclosed by double quotes
requires adding a backslash (\)

 including a single quote (') inside a string enclosed by single quotes
also requires adding a backslash (\)

code1 = "Course 'C Programming' (CP1S01005)"
code2 = 'Course "Python Programming 1" (CP1S02005)'

code1 = "Course \"C Programming\" (CP1S01005)"

code2 = 'Course \'Python Programming 1\' (CP1S02005)'

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 6/27

Python Python -- stringsstrings
 example of an apostrophe in a string

text1 = "Ampere's Law"
text2 = "It's a beautiful day"

print(text1)
print(text2)

Ampere's Law
It's a beautiful day

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 7/27

Python Python -- strings (element indexing)strings (element indexing)
 a string is a sequential type, meaning that access to any element

is possible by specifying its index

 indexing takes the form: string_name[index]

text = "Paul has a dog"

text = "Paul has a dog"

print(f"1st char from the beginning: {text[0]}")
print(f"2nd char form the begening: {text[1]}")
print(f"2nd char from the end: {text[-2]}")

P
a
o

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 8/27

Python Python -- strings (element indexing)strings (element indexing)
 using a colon (:) to create element indexing

 each index can be omitted, in which case the default values are
assumed:
 start_index: 0 (index of the first element)
 end_index: len(lista) (index after the last element)
 step: 1

list[start_index : end_index : step]

text = "Paul has a dog"
print(f"First three characters: {text[0:3]}") # 0,1,2

First three characters: Pau

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 9/27

Python Python -- strings (element indexing)strings (element indexing)

text = "Paul has a dog"
print(f"First three characters: {text[:3]}")
print(f"Text without the first three chars: {text[3:]}")

First three characters: Pau
Text without the first three chars: l has a dog

text = "Paul has a dog"
print(f"Last character: {text[-1]}")
print(f"Last two characters: {text[-2:]}")
print(f"Without the last two characters: {text[0:-2]}")

Last character: g
Last two characters: og
Without the last two characters: Paul has a d

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 10/27

Python Python -- strings (element indexing)strings (element indexing)

text = "Paul has a dog"
print(f"Every 2nd element from the first: {text[::2]}")
print(f"Every 2nd element from the second: {text[1::2]}")

Every 2nd element from the first: Pu a o
Every 2nd element from the second: alhsadg

text = "Paul has a dog"
print(f"Reversed text: {text[::-1]}")

Reversed text: god a sah luaP

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 11/27

Python Python -- strings (methods)strings (methods)
 the len() functions - returns the length of a text string (number

of characters)

text = input("Enter text: ")
length = len(text)
print(f"Number of entered characters: {length}")

Enter text: Python Programming 1
Number of entered characters: 20

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 12/27

Python Python -- strings (methods)strings (methods)
 the title() method - converts the first letter of each word to uppercase

(does not modify the original text)

 permanent capitalization change

text = "paul has a dog"
print(text.title())
print(text)

Paul Has A Dog
paul has a dog

text = "paul has a dog"
text = text.title()
print(text)

Paul Has A Dog

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 13/27

Python Python -- strings (methods)strings (methods)
 the upper() method - converts all lowercase letters to uppercase

 the lower() method - converts all uppercase letters to lowercase

text = "Paul Has a Dog"
print(text.upper())

PAUL HAS A DOG

text = "Paul Has a Dog"
print(text.lower())

paul has a dog

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 14/27

Python Python -- strings (methods)strings (methods)
 the removeprefix() method - removes a prefix from a string (if it exists)

 the removesuffix() method - removes a suffix from a string (if it exists)

url = "https://we.pb.edu.pl"
url = url.removeprefix("https://")
print(url)

we.pb.edu.pl

fname = "grade_python.txt"
print(f"File name: {fname.removesuffix(".txt")}")

File name: grade_python

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 15/27

Python Python -- strings (methods)strings (methods)
 the lstrip() method - removes whitespace from the left side of the string

(beginning)
 the rstrip() method - removes whitespace from the right side of the string

(end)
 the strip() method - removes whitespace from both sides of the string

(beginning and end)
 whitespace characters: spaces (" "), tabs ("\t"), newline characters ("\n")

text = " John Smith "

print(f"[{text}]")
print(f"[{text.lstrip()}]")
print(f"[{text.rstrip()}]")
print(f"[{text.strip()}]")

[John Smith]
[John Smith]
[John Smith]
[John Smith]

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 16/27

Python Python -- strings (methods)strings (methods)
 the lstrip(), rstrip(), and strip() methods can take an argument specifying

a set of characters to remove

text = "###John Smiths###"

print(f"[{text}]")
print(f"[{text.lstrip("#")}]")
print(f"[{text.rstrip("#")}]")
print(f"[{text.strip("#")}]")

[###John Smiths###]
[John Smiths###]
[###John Smiths]
[John Smiths]

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 17/27

Python Python -- strings (methods)strings (methods)
 the startswith(prefix) method - returns True if the given string starts

with the specified prefix

 the endswith(suffix) method - returns True if the given string ends
with the specified suffix

text = "Hello world"
if text.startswith("Hello"):

print("The string starts with: 'Hello'")
else:

print("The string does not start with: 'Hello'")

text = "Hello world"
if text.endswith("world"):

print("The string ends with: 'world'")
else:

print("The string does not ends with: 'world'")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 18/27

Python Python -- strings (methods)strings (methods)
 the count(substring) method - returns the number of occurrences of

a specified substring in the given string

text = "Paul has a dog"
cnt_a = text.count("a")
print(f"Number of occurrences of the letter 'a': {cnt_a}")

Number of occurrances of the letter 'a': 3

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 19/27

Python Python -- strings (methods)strings (methods)
 the find(substring) method - searches for a specified substring in

the given string
 returns the index of the first occurrence of the substring or -1 if

the substring is not found

 the rfind(substring) method - returns the index of the last occurrence
of the substring in the string or -1 if the substring is not found

text = "Paul has a dog"
idx = text.find("dog")
if idx == -1:

print("Substring not found")
else:

print(f"Substring starts at index: {idx}")

Substring starts at index: 11

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 20/27

Python Python -- comparing stringscomparing strings
 comparison operators can be used with strings

 the result of a comparison is either True or False

 two strings are considered equal if they consist of the same characters
in the exact same positions

Operator Meaning Operator Meaning
== equal to != not equal to
> greater than >= greater than or equal to
< less than <= less than or equal to

pass = input("Enter a password: ")
if pass == "123456":

print("This is the most popular password in the world")
else:

print("The password is OK")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 21/27

Python Python -- comparing stringscomparing strings
 when comparing text, be mindful of letter case

name = input("What was Einstein's first name? ")
if name.lower() == "albert":

print("Correct answer!")
else:

print("Incorrect answer!")

What was Einstein's first name? Albert
Correct answer!

What was Einstein's first name? albert
Correct answer!

What was Einstein's first name? Albie
Incorrect answer!

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 22/27

Python Python -- strings (example)strings (example)
 counting the number of digits in a string

 the ord() function takes a single character (of type str) as an argument
and returns its corresponding Unicode numerical value

text = (input("Enter text: "))
count = 0
for char in text:

if ord(char) >= 48 and ord(char) <= 57:
count = count + 1

print(f"The text contains {count} digits")

Enter text: asd58Dr4Hik2189
The text contains 7 digits

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 23/27

Python Python -- strings and operators: +, * strings and operators: +, *
 the + operator is used to combine two strings into one

 the * operator is used to repeat a string a specified number of times

first_name = "John"
last_name = "Smith"
person = first_name + " " + last_name
print(person)

John Smith

text = "<->"
new_text = text * 10
print(new_text)

<-><-><-><-><-><-><-><-><-><->

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 24/27

Python Python -- strings and listsstrings and lists
 the sort() method - sorts the elements in a list in alphabetical order;

the sorting is permanent (modifies the original list)

 elements can also be sorted in reverse alphabetical order

passive = ["resistor", "inductor", "capacitor"]
passive.sort()
print(passive)

['capacitor', 'inductor', 'resistor']

passive = ["resistor", "capacitor", "inductor"]
passive.sort(reverse = True)
print(passive)

['resistor', 'inductor', 'capacitor']

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 25/27

Python Python -- strings and listsstrings and lists
 the sorted() function - sorts the elements in a list in alphabetical order;

does not modify the original list (returns a new sorted list)

 the sorted() function can also take the argument reverse=True for sorting
in reverse alphabetical order

passive = ["resistor", "inductor", "capacitor"]
print(passive)
print(sorted(passive))
print(passive)

['resistor', 'inductor', 'capacitor']
['capacitor', 'inductor', 'resistor']
['resistor', 'inductor ', 'capacitor']

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 26/27

Python Python -- strings and listsstrings and lists
 the split(separator, maxsplit) method splits a string into fragments

(called tokens) based on a specified separator
 separator (optional) - a character or string used as the delimiter;

by default, it splits at whitespace (spaces, tabs, newlines)
 maxsplit (optional) - the maximum number of splits to perform

text = input("Enter text: ")
tokens = text.split()
print(tokens)

Enter text: Paul has a dog
['Paul', 'has', 'a', 'dog']

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 3 27/27

End of lecture no. End of lecture no. 33

Thank you for your attention!Thank you for your attention!

