
Python Programming 1Python Programming 1

BiałystokBiałystok University of TechnologyUniversity of Technology
Faculty of Electrical EngineeringFaculty of Electrical Engineering

Industry Digitization, semester IIndustry Digitization, semester III
Academic year 2024/2025Academic year 2024/2025

Lecture no. 0Lecture no. 044 ((2626.03.2025).03.2025)

Jarosław Forenc, PhD

(CP1S02005E)(CP1S02005E)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 2/32

TopicsTopics
 Lists

 implementation, creation methods, list comprehension
 element indexes, slices
 functions and methods

 Tuples
 implementation, creation methods
 element indexes, slices

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 3/32

Python Python -- listslists
 List - a mutable data structure that stores a collection of elements

arranged in a specific order

 list elements are placed inside square brackets and separated
by commas

 lists can contain elements of different data types (numbers, strings,
other lists, tuples, dictionaries)

 the elements of a list do not have to be related (but usually are)
 lists are dynamic - elements can be added and removed during

program execution

numbers = [5, 2, 8, 3, 0, 2, 1]
functions = ["print", "input", "sort", "sqrt"]

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 4/32

Python Python -- tuplestuples
 Tuple - an immutable data structure that stores a collection

of elements arranged in a specific order (a list of elements
that cannot be changed)

 tuple elements are placed inside regular parentheses and separated
by commas

 tuples can contain elements of different data types (numbers, strings,
lists, other tuples, dictionaries)

 they take up less memory than lists, making them more efficient when
data is only meant to be read

numbers = (5, 2, 8, 3, 0, 2, 1)
functions = ("print", "input", "sort", "sqrt")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 5/32

Python Python -- lists, creation methodslists, creation methods
 using a pair of square brackets to denote an empty list

 using square brackets and separating elements with commas

[]

my_list = []
print(my_list)

['Jane']
['Peter', 'Joe', 'Luke']

names1 = ["Jane"]
names2 = ["Peter", "Joe", "Luke"]
print(names1)
print(names2)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 6/32

Python Python -- lists, creation methodslists, creation methods
 using the no-argument constructor: list()

 using the constructor with an iterable object as an argument: list(iterable)
 an iterable object can be a sequence, a container supporting iteration,

or an iterator object
 the constructor creates a list whose elements are the same and in

the same order as the elements of the iterable object

[]

my_list = list()
print(my_list)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 7/32

Python Python -- lists, creation methodslists, creation methods
 another list as a constructor argument: list(iterable)

 other iterable objects as constructor arguments: list(iterable)

['Peter', 'Joe', 'Luke']

names = ["Peter", "Joe", "Luke"]
names_list = list(names)
print(names_list)

['A', 'B', 'C', 'D', 'E']
[1, 2, 3, 4, 5]

letters = list("ABCDE")
numbers = list((1, 2, 3, 4, 5))
print(letters)
print(numbers)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 8/32

Python Python -- lists, creation methodslists, creation methods
 using list comprehension
 list comprehension combines a for loop, the creation of a new element,

and its automatic addition to the list in a single line of code

 example: a list of squares of numbers from 1 to 10

 the for loop generates numbers x for the expression, the values of
the expression are added to the squares list, note: there is no colon (:)
after the for loop

list_name = [expression for element in sequence]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

squares = [x**2 for x in range(1,11)]
print(squares)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 9/32

Python Python -- lists, creation methodslists, creation methods
 using list comprehension
 it is also possible to add a condition to a list comprehension to filter

elements

 example: a list of squares of even numbers from 1 to 10

name = [expression for element in sequence if condition]

[4, 16, 36, 64, 100]

squares = [x**2 for x in range(1,11) if x % 2 == 0]
print(squares)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 10/32

Python Python -- lists, element indexeslists, element indexes
 a list is an ordered collection, and any of its elements can be accessed

by specifying its position (index)
 the first element of a list has an index of 0, the second element has

an index of 1, and so on
 the last element of a list has an additional index of -1, the second-to-

last element has an index of -2, and so on

names = ["Peter", "Joe", "Luke", "Harry", "Matt")]

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 11/32

Python Python -- lists, element indexeslists, element indexes
 to reference list elements, provide the list name followed by the element

number in square brackets: list_name[index]

 using an invalid index will cause a runtime error

Hello Joe!
Hello Matt!

names = ["Peter", "Joe", "Luke", "Harry", "Matt"]
print(f"Hello {names[1]}!")
print(f"Hello {names[-1]}!")

print(f"Hello {names[5]}!")

Traceback (most recent call last):
File "d:\MyApp.py", line 2, in <module>

print(f"Hello {names[5]}!")
~~~~~~^^^

IndexError: list index out of range



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 12/32

Python Python -- lists, element indexeslists, element indexes
 a colon (:) allows working with parts of a list, called slices

 the slice starts from the element at start_index and ends at the element 
before end_index

 each of the values inside the square brackets can be omitted, and default 
values will be assumed

 start_index - default: 0 (first element)
 end_index - default: len(list) (total number of elements in the list)
 step - default: 1

list_name[start_index : end_index : step]



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 13/32

Python Python -- lists, element indexeslists, element indexes
 examples of creating slices

['Peter', 'Joe', 'Luke']
['Peter', 'Joe', 'Luke', 'Harry']
['Luke', 'Harry', 'Matt']

['Peter', 'Luke', 'Matt']

['Peter', 'Joe', 'Luke', 'Harry', 'Matt']

names = ["Peter", "Joe", "Luke", "Harry", "Matt"]

print(names[0:3])
print(names[:4])
print(names[-3:])

print(names[::2])

print(names[:])



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 14/32

Python Python -- lists, element indexeslists, element indexes
 displaying a list using a for loop

 displaying a slice of a list using a for loop

Hello Peter!
Hello Joe!
Hello Luke!

names = ["Peter", "Joe", "Luke"]
for name in names:

print(f"Hello {name}!")

Hello Peter!
Hello Joe!

names = ["Peter", "Joe", "Luke"]
for name in names[0:2]:

print(f"Hello {name}!")



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 15/32

Python Python -- lists, functions and methods lists, functions and methods 
Function / Method Result

len(list_name) returns the number of elements in the list

min(list_name) returns the smallest element in the list

max(list_name) returns the largest element in the list

sum(list_name) returns the sum of the elements in the list

sum(list_name,start=0)
returns the sum of the elements in the list, where 
start is an optional parameter specifying the initial
value of the sum (default is 0) 

sorted(list_name) returns a sorted version of the list without
modifying the original list



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 16/32

Python Python -- lists, functions and methodslists, functions and methods
Function / Method Result

del list_name[i:j] removes elements with indices from i to j-1,
equivalent to: list_name[i:j] = []

del list_name[i:j:k] removes elements from i to j-1 with a step of k

list_name.append(x) adds element x to the end of the list

list_name.clear() removes all elements from the list, equivalent to:
del list_name[:]

list_name.copy(x) creates a copy of the list, equivalent to: list_name[:]

list_name.extend(t) adds the contents of the iterable t to the end 
of the list t



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 17/32

Python Python -- lists, functions and methodslists, functions and methods
Function / Method Result

list_name.insert(i,x) inserts element x at index i

list_name.pop() removes and returns the last element of the list

list_name.pop(i) removes and returns the element at index i

list_name.remove(x) removes the first occurrence of element x in the list

list_name.reverse() reverses the order of elements in the list

list_name.sort() sorts the elements in the list



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 18/32

Python Python -- lists, operations (in)lists, operations (in)
 checking if a value is in a list - the in keyword

 an underscore after the keyword for is often used when the loop variable 
is not needed inside the loop

import random

numbers = [random.randint(0,9) for _ in range(10)]
print(numbers)

num = int(input("Enter a number: "))

if num in numbers:
print(f"The number {num} is in the list")

else:
print(f"The number {num} is not in the list")

[1, 4, 1, 8, 5, 4, 0, 9, 0, 1]
Enter a number: 1
The number 1 is in the list



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 19/32

Python Python -- lists, operations (not in)lists, operations (not in)
 checking if a value is not in a list - the not in keyword

import random

numbers = [random.randint(0,9) for _ in range(10)]
print(numbers)

num = int(input("Enter a number: "))

if num not in numbers:
print(f"The number {num} is in the list")

else:
print(f"The number {num} is not in the list")

[2, 5, 8, 2, 0, 3, 9, 1, 7, 4]
Enter a number: 6
The number 6 is not in the list



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 20/32

Python Python -- lists, operations (is the list empty?)lists, operations (is the list empty?)
 checking if a list is not empty

 if a list’s name appears in an if statement, it returns True if the list 
contains at least one element

 for an empty list, it returns False

passive = ["resistor", "coil", "capacitor"]

if passive:
print("The 'passive' list is not empty")

else:
print("The 'passive' list is empty")

The 'passive' list is not empty



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 21/32

Python Python -- lists, operations (copy of the list)lists, operations (copy of the list)
 assigning a new name to an existing list does not create a copy

 both variables refer to the same object in memory (the list)

passive = ["resistor", "coil"]

new_passive = passive
passive.append("capacitor")

print(f"passive = {passive}")
print(f"new_passive = {new_passive}")

passive =     ['resistor', 'coil', 'capacitor'] 
new_passive = ['resistor', 'coil', 'capacitor']



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 22/32

Python Python -- lists, operations (copy of the list)lists, operations (copy of the list)
 creating a copy of a list requires using a slice that covers the entire 

original list

 this gives you two separate objects in memory (two lists)

passive = ["resistor", "coil"]

new_passive = passive[:]
passive.append("capacitor")

print(f"passive = {passive}")
print(f"new_passive = {new_passive}")

passive =     ['resistor', 'coil', 'capacitor'] 
new_passive = ['resistor', 'coil']



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 23/32

Python Python -- lists, operations (moving elements)lists, operations (moving elements)
 to transfer elements from one list to another, it is better to use a while

loop than a for loop (inside a for loop, you should not modify the list 
that is being iterated over)

passive = ["resistor", "coil", "capacitor"]
new_passive = []

while passive:
element = passive.pop()
print(f"Moving element: {element}")
new_passive.append(element)

print(new_passive)

Moving element: capacitor
Moving element: coil
Moving element: resistor
['capacitor', 'coil', 'resistor']



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 24/32

Python Python -- lists, operations (removing elements)lists, operations (removing elements)
 removing from a list values that occur multiple times

names = ["Peter", "Joe", "Luke", "Peter", "Matt", "Joe"]
print(names)

element = input("Enter the element to remove: ")
while element in names:

names.remove(element)

print(names)

['Peter', 'Joe', 'Luke', 'Peter', 'Matt', 'Joe']
Enter the element to remove: Joe
['Peter', 'Luke', 'Peter', 'Matt']



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 25/32

Python Python -- tuplets, creation methodstuplets, creation methods
 using a pair of regular parentheses to denote an empty tuple

 using regular parentheses and separating elements with commas

()

my_tuple = ()
print(my_tuple)

('Peter', 'Joe', 'Luke')

names = ("Peter", "Joe", "Luke")
print(imiona)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 26/32

Python Python -- tuplets, creation methodstuplets, creation methods
 defining a single-element tuple requires adding a comma at the end

 omitting the comma results in a regular variable instead of a tuple

('Mary',)
('Sarah',)

name1 = ("Mary",)
name2 = "Sarah",
print(name1)
print(name2)

Mary

name = ("Mary")
print(name)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 27/32

Python Python -- tuplets, creation methodstuplets, creation methods
 using the no-argument constructor: tuple()

 using the constructor with an iterable object as an argument: 
tuple(iterable)

 an iterable object can be a sequence, a container supporting iteration, 
or an iterator object

 the constructor creates a tuple whose elements are the same and in 
the same order as the elements of the iterable object

()

my_tuple = tuple()
print(my_tuple)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 28/32

Python Python -- tuplets, creation methodstuplets, creation methods
 another tuple (or list) as a constructor argument: tuple(iterable)

 other iterable objects as constructor arguments: tuple(iterable)

('Peter', 'Joe', 'Luke')

names = ("Peter", "Joe", "Luke"))
names_tuple = tuple(names)
print(names_tuple)

('A', 'B', 'C', 'D', 'E')
(1, 2, 3, 4, 5)

letters = tuple("ABCDE")
numbers = tuple((1, 2, 3, 4, 5))
print(letters)
print(numbers)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 29/32

Python Python -- tuplets, element indexestuplets, element indexes
 a tuple, like a list, is an ordered collection, and any of its elements can 

be accessed by specifying its index

 to reference tuple elements, provide the tuple's name followed by 
the element number in square brackets: tuple_name[index]

 using a colon (:) allows working with slices of the tuple

names = ("Peter", "Joe", "Luke", "Harry", "Matt")



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 30/32

Python Python -- tuplets, element indexestuplets, element indexes
 examples of referencing tuple elements

Peter
Joe
Matt

('Luke', 'Harry', 'Matt')
('Peter', 'Luke', 'Matt')

names = ("Peter", "Joe", "Luke", "Harry", "Matt")

print(names[0])
print(names[1])
print(names[-1])

print(names[2:])
print(names[::2])



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 31/32

Python Python -- tupletstuplets
 attempting to modify a tuple element will result in an error

 a tuple can be overwritten with new values

Traceback (most recent call last):
File "d:\MyApp.py", line 2, in <module>

imiona[0] = "Paul"
~~~~~~^^^

TypeError: 'tuple' object does not support item assignment

names = ("Peter", "Joe", "Luke", "Harry", "Matt")
names[0] = "Paul"

names = ("Peter", "Joe", "Luke", "Harry", "Matt")
print(names)

names = ("Linda", "Mary", "Sarah", "Janet")
print(names)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 32/32

End of lecture no. End of lecture no. 44

Thank you for your attention!Thank you for your attention!

