
Python Programming 1Python Programming 1

BiałystokBiałystok University of TechnologyUniversity of Technology
Faculty of Electrical EngineeringFaculty of Electrical Engineering

Industry Digitization, semester IIndustry Digitization, semester III
Academic year 2024/2025Academic year 2024/2025

Lecture no. 0Lecture no. 044 ((2626.03.2025).03.2025)

Jarosław Forenc, PhD

(CP1S02005E)(CP1S02005E)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 2/32

TopicsTopics
 Lists

 implementation, creation methods, list comprehension
 element indexes, slices
 functions and methods

 Tuples
 implementation, creation methods
 element indexes, slices

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 3/32

Python Python -- listslists
 List - a mutable data structure that stores a collection of elements

arranged in a specific order

 list elements are placed inside square brackets and separated
by commas

 lists can contain elements of different data types (numbers, strings,
other lists, tuples, dictionaries)

 the elements of a list do not have to be related (but usually are)
 lists are dynamic - elements can be added and removed during

program execution

numbers = [5, 2, 8, 3, 0, 2, 1]
functions = ["print", "input", "sort", "sqrt"]

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 4/32

Python Python -- tuplestuples
 Tuple - an immutable data structure that stores a collection

of elements arranged in a specific order (a list of elements
that cannot be changed)

 tuple elements are placed inside regular parentheses and separated
by commas

 tuples can contain elements of different data types (numbers, strings,
lists, other tuples, dictionaries)

 they take up less memory than lists, making them more efficient when
data is only meant to be read

numbers = (5, 2, 8, 3, 0, 2, 1)
functions = ("print", "input", "sort", "sqrt")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 5/32

Python Python -- lists, creation methodslists, creation methods
 using a pair of square brackets to denote an empty list

 using square brackets and separating elements with commas

[]

my_list = []
print(my_list)

['Jane']
['Peter', 'Joe', 'Luke']

names1 = ["Jane"]
names2 = ["Peter", "Joe", "Luke"]
print(names1)
print(names2)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 6/32

Python Python -- lists, creation methodslists, creation methods
 using the no-argument constructor: list()

 using the constructor with an iterable object as an argument: list(iterable)
 an iterable object can be a sequence, a container supporting iteration,

or an iterator object
 the constructor creates a list whose elements are the same and in

the same order as the elements of the iterable object

[]

my_list = list()
print(my_list)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 7/32

Python Python -- lists, creation methodslists, creation methods
 another list as a constructor argument: list(iterable)

 other iterable objects as constructor arguments: list(iterable)

['Peter', 'Joe', 'Luke']

names = ["Peter", "Joe", "Luke"]
names_list = list(names)
print(names_list)

['A', 'B', 'C', 'D', 'E']
[1, 2, 3, 4, 5]

letters = list("ABCDE")
numbers = list((1, 2, 3, 4, 5))
print(letters)
print(numbers)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 8/32

Python Python -- lists, creation methodslists, creation methods
 using list comprehension
 list comprehension combines a for loop, the creation of a new element,

and its automatic addition to the list in a single line of code

 example: a list of squares of numbers from 1 to 10

 the for loop generates numbers x for the expression, the values of
the expression are added to the squares list, note: there is no colon (:)
after the for loop

list_name = [expression for element in sequence]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

squares = [x**2 for x in range(1,11)]
print(squares)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 9/32

Python Python -- lists, creation methodslists, creation methods
 using list comprehension
 it is also possible to add a condition to a list comprehension to filter

elements

 example: a list of squares of even numbers from 1 to 10

name = [expression for element in sequence if condition]

[4, 16, 36, 64, 100]

squares = [x**2 for x in range(1,11) if x % 2 == 0]
print(squares)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 10/32

Python Python -- lists, element indexeslists, element indexes
 a list is an ordered collection, and any of its elements can be accessed

by specifying its position (index)
 the first element of a list has an index of 0, the second element has

an index of 1, and so on
 the last element of a list has an additional index of -1, the second-to-

last element has an index of -2, and so on

names = ["Peter", "Joe", "Luke", "Harry", "Matt")]

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 11/32

Python Python -- lists, element indexeslists, element indexes
 to reference list elements, provide the list name followed by the element

number in square brackets: list_name[index]

 using an invalid index will cause a runtime error

Hello Joe!
Hello Matt!

names = ["Peter", "Joe", "Luke", "Harry", "Matt"]
print(f"Hello {names[1]}!")
print(f"Hello {names[-1]}!")

print(f"Hello {names[5]}!")

Traceback (most recent call last):
File "d:\MyApp.py", line 2, in <module>

print(f"Hello {names[5]}!")
~~~~~~^^^

IndexError: list index out of range



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 12/32

Python Python -- lists, element indexeslists, element indexes
 a colon (:) allows working with parts of a list, called slices

 the slice starts from the element at start_index and ends at the element 
before end_index

 each of the values inside the square brackets can be omitted, and default 
values will be assumed

 start_index - default: 0 (first element)
 end_index - default: len(list) (total number of elements in the list)
 step - default: 1

list_name[start_index : end_index : step]



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 13/32

Python Python -- lists, element indexeslists, element indexes
 examples of creating slices

['Peter', 'Joe', 'Luke']
['Peter', 'Joe', 'Luke', 'Harry']
['Luke', 'Harry', 'Matt']

['Peter', 'Luke', 'Matt']

['Peter', 'Joe', 'Luke', 'Harry', 'Matt']

names = ["Peter", "Joe", "Luke", "Harry", "Matt"]

print(names[0:3])
print(names[:4])
print(names[-3:])

print(names[::2])

print(names[:])



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 14/32

Python Python -- lists, element indexeslists, element indexes
 displaying a list using a for loop

 displaying a slice of a list using a for loop

Hello Peter!
Hello Joe!
Hello Luke!

names = ["Peter", "Joe", "Luke"]
for name in names:

print(f"Hello {name}!")

Hello Peter!
Hello Joe!

names = ["Peter", "Joe", "Luke"]
for name in names[0:2]:

print(f"Hello {name}!")



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 15/32

Python Python -- lists, functions and methods lists, functions and methods 
Function / Method Result

len(list_name) returns the number of elements in the list

min(list_name) returns the smallest element in the list

max(list_name) returns the largest element in the list

sum(list_name) returns the sum of the elements in the list

sum(list_name,start=0)
returns the sum of the elements in the list, where 
start is an optional parameter specifying the initial
value of the sum (default is 0) 

sorted(list_name) returns a sorted version of the list without
modifying the original list



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 16/32

Python Python -- lists, functions and methodslists, functions and methods
Function / Method Result

del list_name[i:j] removes elements with indices from i to j-1,
equivalent to: list_name[i:j] = []

del list_name[i:j:k] removes elements from i to j-1 with a step of k

list_name.append(x) adds element x to the end of the list

list_name.clear() removes all elements from the list, equivalent to:
del list_name[:]

list_name.copy(x) creates a copy of the list, equivalent to: list_name[:]

list_name.extend(t) adds the contents of the iterable t to the end 
of the list t



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 17/32

Python Python -- lists, functions and methodslists, functions and methods
Function / Method Result

list_name.insert(i,x) inserts element x at index i

list_name.pop() removes and returns the last element of the list

list_name.pop(i) removes and returns the element at index i

list_name.remove(x) removes the first occurrence of element x in the list

list_name.reverse() reverses the order of elements in the list

list_name.sort() sorts the elements in the list



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 18/32

Python Python -- lists, operations (in)lists, operations (in)
 checking if a value is in a list - the in keyword

 an underscore after the keyword for is often used when the loop variable 
is not needed inside the loop

import random

numbers = [random.randint(0,9) for _ in range(10)]
print(numbers)

num = int(input("Enter a number: "))

if num in numbers:
print(f"The number {num} is in the list")

else:
print(f"The number {num} is not in the list")

[1, 4, 1, 8, 5, 4, 0, 9, 0, 1]
Enter a number: 1
The number 1 is in the list



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 19/32

Python Python -- lists, operations (not in)lists, operations (not in)
 checking if a value is not in a list - the not in keyword

import random

numbers = [random.randint(0,9) for _ in range(10)]
print(numbers)

num = int(input("Enter a number: "))

if num not in numbers:
print(f"The number {num} is in the list")

else:
print(f"The number {num} is not in the list")

[2, 5, 8, 2, 0, 3, 9, 1, 7, 4]
Enter a number: 6
The number 6 is not in the list



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 20/32

Python Python -- lists, operations (is the list empty?)lists, operations (is the list empty?)
 checking if a list is not empty

 if a list’s name appears in an if statement, it returns True if the list 
contains at least one element

 for an empty list, it returns False

passive = ["resistor", "coil", "capacitor"]

if passive:
print("The 'passive' list is not empty")

else:
print("The 'passive' list is empty")

The 'passive' list is not empty



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 21/32

Python Python -- lists, operations (copy of the list)lists, operations (copy of the list)
 assigning a new name to an existing list does not create a copy

 both variables refer to the same object in memory (the list)

passive = ["resistor", "coil"]

new_passive = passive
passive.append("capacitor")

print(f"passive = {passive}")
print(f"new_passive = {new_passive}")

passive =     ['resistor', 'coil', 'capacitor'] 
new_passive = ['resistor', 'coil', 'capacitor']



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 22/32

Python Python -- lists, operations (copy of the list)lists, operations (copy of the list)
 creating a copy of a list requires using a slice that covers the entire 

original list

 this gives you two separate objects in memory (two lists)

passive = ["resistor", "coil"]

new_passive = passive[:]
passive.append("capacitor")

print(f"passive = {passive}")
print(f"new_passive = {new_passive}")

passive =     ['resistor', 'coil', 'capacitor'] 
new_passive = ['resistor', 'coil']



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 23/32

Python Python -- lists, operations (moving elements)lists, operations (moving elements)
 to transfer elements from one list to another, it is better to use a while

loop than a for loop (inside a for loop, you should not modify the list 
that is being iterated over)

passive = ["resistor", "coil", "capacitor"]
new_passive = []

while passive:
element = passive.pop()
print(f"Moving element: {element}")
new_passive.append(element)

print(new_passive)

Moving element: capacitor
Moving element: coil
Moving element: resistor
['capacitor', 'coil', 'resistor']



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 24/32

Python Python -- lists, operations (removing elements)lists, operations (removing elements)
 removing from a list values that occur multiple times

names = ["Peter", "Joe", "Luke", "Peter", "Matt", "Joe"]
print(names)

element = input("Enter the element to remove: ")
while element in names:

names.remove(element)

print(names)

['Peter', 'Joe', 'Luke', 'Peter', 'Matt', 'Joe']
Enter the element to remove: Joe
['Peter', 'Luke', 'Peter', 'Matt']



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 25/32

Python Python -- tuplets, creation methodstuplets, creation methods
 using a pair of regular parentheses to denote an empty tuple

 using regular parentheses and separating elements with commas

()

my_tuple = ()
print(my_tuple)

('Peter', 'Joe', 'Luke')

names = ("Peter", "Joe", "Luke")
print(imiona)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 26/32

Python Python -- tuplets, creation methodstuplets, creation methods
 defining a single-element tuple requires adding a comma at the end

 omitting the comma results in a regular variable instead of a tuple

('Mary',)
('Sarah',)

name1 = ("Mary",)
name2 = "Sarah",
print(name1)
print(name2)

Mary

name = ("Mary")
print(name)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 27/32

Python Python -- tuplets, creation methodstuplets, creation methods
 using the no-argument constructor: tuple()

 using the constructor with an iterable object as an argument: 
tuple(iterable)

 an iterable object can be a sequence, a container supporting iteration, 
or an iterator object

 the constructor creates a tuple whose elements are the same and in 
the same order as the elements of the iterable object

()

my_tuple = tuple()
print(my_tuple)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 28/32

Python Python -- tuplets, creation methodstuplets, creation methods
 another tuple (or list) as a constructor argument: tuple(iterable)

 other iterable objects as constructor arguments: tuple(iterable)

('Peter', 'Joe', 'Luke')

names = ("Peter", "Joe", "Luke"))
names_tuple = tuple(names)
print(names_tuple)

('A', 'B', 'C', 'D', 'E')
(1, 2, 3, 4, 5)

letters = tuple("ABCDE")
numbers = tuple((1, 2, 3, 4, 5))
print(letters)
print(numbers)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 29/32

Python Python -- tuplets, element indexestuplets, element indexes
 a tuple, like a list, is an ordered collection, and any of its elements can 

be accessed by specifying its index

 to reference tuple elements, provide the tuple's name followed by 
the element number in square brackets: tuple_name[index]

 using a colon (:) allows working with slices of the tuple

names = ("Peter", "Joe", "Luke", "Harry", "Matt")



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 30/32

Python Python -- tuplets, element indexestuplets, element indexes
 examples of referencing tuple elements

Peter
Joe
Matt

('Luke', 'Harry', 'Matt')
('Peter', 'Luke', 'Matt')

names = ("Peter", "Joe", "Luke", "Harry", "Matt")

print(names[0])
print(names[1])
print(names[-1])

print(names[2:])
print(names[::2])



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 4 31/32

Python Python -- tupletstuplets
 attempting to modify a tuple element will result in an error

 a tuple can be overwritten with new values

Traceback (most recent call last):
File "d:\MyApp.py", line 2, in <module>

imiona[0] = "Paul"
~~~~~~^^^

TypeError: 'tuple' object does not support item assignment

names = ("Peter", "Joe", "Luke", "Harry", "Matt")
names[0] = "Paul"

names = ("Peter", "Joe", "Luke", "Harry", "Matt")
print(names)

names = ("Linda", "Mary", "Sarah", "Janet")
print(names)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 4 32/32

End of lecture no. End of lecture no. 44

Thank you for your attention!Thank you for your attention!

