
Python Programming 1Python Programming 1

BiałystokBiałystok University of TechnologyUniversity of Technology
Faculty of Electrical EngineeringFaculty of Electrical Engineering

Industry Digitization, semester IIndustry Digitization, semester III
Academic year 2024/2025Academic year 2024/2025

Lecture no. 0Lecture no. 055 ((0202.0.044.2025).2025)

Jarosław Forenc, PhD

(CP1S02005E)(CP1S02005E)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 5 2/42

TopicsTopics
 Dictionary

 implementation
 creation methods
 operations

 Set
 implementation
 creation methods
 operations

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 5 3/42

Python Python -- dictionarydictionary
 A dictionary is a collection of key-value pairs where each key

is unique and associated with a specific value

 dictionary elements are enclosed in curly braces {}
 a key is connected to its value using a colon :
 key-value pairs are separated by commas
 a key allows access to its corresponding value
 keys can be numbers, strings, lists, or other dictionaries

(any object that can be created in Python)
 a dictionary can store any number of key-value pairs

descr = {"gender" : "M", "height" : 170, "eyes" : "gray"}
computer = {"processor" : "AMD", "disk" : "SSD"}

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 5 4/42

Python Python -- dictionary, creation methodsdictionary, creation methods
 using a pair of curly braces to create an empty dictionary

 an empty dictionary is useful for storing user-inputted data or
automatically generated key-value pairs

 you can also create an empty dictionary using the dict() constructor

{}

my_dict = {}
print(my_dict)

my_dict = dict()

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 5 5/42

Python Python -- dictionary, creation methodsdictionary, creation methods
 using curly braces, separating key-value pairs with commas,

and connecting keys and values with a colon

{'processor': 'Intel', 'disk': 'HDD'}
{'A': 1, 'B': 2, 'C': 0}
{0: 1, 1: 1, 2: 0}

computer = {"processor" : "Intel", "disk" : "HDD"}
letters = {"A" : 1, "B" : 2, "C" : 0}
numbers = {0 : 1, 1 : 1, 2 : 0}
print(computers)
print(letters)
print(numbers)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 5 6/42

Python Python -- dictionary, creation methodsdictionary, creation methods
 the dictionary definition can be spread across multiple lines of code

 it is good practice to include a comma after the last key-value pair
 this ensures syntactic consistency and improves code readability

{'processor': 'Intel', 'disk': 'HDD', 'keyboard':
'A4Tech', 'mouse': 'Logitech'}

computer = {
"processor" : "Intel",
"disk" : "HDD",
"keyboard" : "A4Tech",
"mouse" : "Logitech",
}

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 5 7/42

Python Python -- dictionary, key uniquenessdictionary, key uniqueness
 in a dictionary, each key must be unique
 if a value is assigned to an existing key, it will replace the previous value

{'John': 18, 'Alex': 19, 'Kate': 23}

age = {"John" : 21, "Alex" : 19, "John" : 18, "Kate" : 23}
print(age)

{'A': 2, 'B': 2}

letters = {"A" : 1, "B" : 1, "B" : 2, "A" : 2}
print(letters)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 5 8/42

Python Python -- dictionary, creation methodsdictionary, creation methods
 using dictionary comprehension
 dictionary comprehension refers to the syntax that allows creating a new

dictionary by iterating over existing data and applying conditions
 general structure of dictionary comprehension

 key_expr - an expression that defines the key for each key-value pair
 value_expr - an expression that defines the value for each key
 item - a variable used for iterating over elements in an iterable object
 iterable - an object that can be iterated over (e.g., list, tuple)
 condition - an optional condition that must be met for an element

to be added to the dictionary

{key_expr: value_expr for item in iterable if condition}

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 5 9/42

Python Python -- dictionary, creation methodsdictionary, creation methods
 example: creating a dictionary from a list

 example: creating a dictionary from a tuple

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

numbers = [1, 2, 3, 4, 5]
squares = {num: num**2 for num in numbers}
print(squares)

{'apple': 5, 'banana': 6, 'kiwi': 4}

fruits = ('apple', 'banana', 'kiwi')
lengths = {fruit: len(fruit) for fruit in fruits}
print(lengths)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 5 10/42

Python Python -- dictionary, creation methodsdictionary, creation methods
 example: creating a dictionary from a list with a condition

2: 4, 4: 16, 6: 36, 8: 64, 10: 100}

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
evens = {num: num**2 for num in numbers if num % 2 == 0}
print(evens)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 5 11/42

Python Python -- dictionary, accessing valuesdictionary, accessing values
 to retrieve a value associated with a key, use the dictionary name

followed by the key name in square brackets

 example:

dictionary_name[key_name]

Processor: AMD
Disk: SSD

computer = {"processor" : "AMD", "disk" : "SSD"}
print(f"Processor: {computer["processor"]}")
print(f"Disk: {computer["disk"]}")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 5 12/42

Python Python -- dictionary, accessing valuesdictionary, accessing values
 providing an incorrect key name will result in a runtime error

Traceback (most recent call last):
File "d:\MyApp.py", line 2, in <module>

print(f"Processor: {computer["Processor"]}")
~~~~~~~~^^^^^^^^^^^^

KeyError: 'Processor'

computer = {"processor" : "AMD", "disk" : "SSD"}
print(f"Processor: {computer["Processor"]}")
print(f"Disk: {computer["disk"]}")



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 13/42

Python Python -- dictionary, operationsdictionary, operations
 a dictionary is a dynamic structure, allowing key-value pairs to be added 

and removed at any time
 to add a new key-value pair, specify the dictionary name, the new key 

in square brackets, and the value to be assigned

 a dictionary maintains the order in which key-value pairs were added

{'processor': 'AMD'}
{'processor': 'AMD', 'disk': 'HDD', 'mouse': 'A4Tech'}

computer = {"processor" : "AMD"}
print(computer)
computer["disk"] = "HDD"
computer["mouse"] = "A4Tech"
print(computer)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 14/42

Python Python -- dictionary, operationsdictionary, operations
 if a key already exists, its value is updated

 you can also use the update() method to add new key-value pairs 
or update existing values

{'processor': 'AMD', 'disk': 'SSD'}

computer = {"processor" : "AMD", "disk" : "HDD"}
computer["disk"] = "SSD"
print(computer)

{'processor': 'Intel', 'disk': 'SSD'}

computer = {"processor" : "AMD"}
computer.update({"disk" : "SSD", "processor" : "Intel"})
print(computer)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 15/42

Python Python -- dictionary, operationsdictionary, operations
 the setdefault(key, default_value) method adds a new key with a specified 

default value if the key does not already exist in the dictionary

{'processor': 'AMD'}
{'processor': 'AMD', 'disk': 'SSD'}
{'processor': 'AMD', 'disk': 'SSD'}

computer = {"processor" : "AMD"}
print(computer)
computer.setdefault("disk","SSD")
print(computer)
computer.setdefault("processor","Intel")
print(computer)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 16/42

Python Python -- dictionary, operationsdictionary, operations
 the del function is used to remove a specific key from a dictionary

 the pop() method can be used to remove a key and return 
its corresponding value

{'disk': 'HDD'}

computer = {"processor" : "AMD", "disk" : "HDD"}
del computer["processor"]
print(computer)

{'processor': 'AMD'}
HDD

computer = {"processor" : "AMD", "disk" : "HDD"}
result = computer.pop("disk")
print(computer)
print(result)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 17/42

Python Python -- dictionary, operationsdictionary, operations
 in the pop() method, a default value can be provided as the second 

argument
 if the key does not exist, this value will be returned

{'processor': 'AMD'}
HDD
{'processor': 'AMD'}
The key does not exist

computer = {"processor" : "AMD", "disk" : "HDD"}

result = computer.pop("disk","The key does not exist")
print(computer)
print(result)

result = computer.pop("mouse","The key does not exist")
print(computer)
print(result)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 18/42

Python Python -- dictionary, operationsdictionary, operations
 the popitem() method is used to remove the last key-value pair from 

a dictionary
 this method removes and returns the last key-value pair as a tuple

 every key-value pair removal operation is irreversible

{'processor': 'AMD'}
disk HDD

computer = {"processor" : "AMD", "disk" : "HDD"}
key, value = computer.popitem()
print(computer)
print(key, value)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 19/42

Python Python -- dictionary, operationsdictionary, operations
 the get() method can be used to retrieve a value from a dictionary 

based on a given key

 if the key does not exist, the get() method returns a default value (None)

HDD

computer = {"processor" : "AMD", "disk" : "HDD"}
value = computer.get("disk")
print(value)

None

computer = {"processor" : "AMD", "disk" : "HDD"}
value = computer.get("mouse")
print(value)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 20/42

Python Python -- dictionary, operationsdictionary, operations
 checking values stored in a dictionary - comparison operator (==)

You have an AMD processor

computer = {"processor" : "AMD", "disk" : "HDD"}
if computer["processor"] == "AMD":

print("You have an AMD processor")
if computer["processor"] == "Intel":

print("You have an Intel processor")



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 21/42

Python Python -- dictionary, operationsdictionary, operations
 iterating through all key-value pairs - use a for loop with the items() method

 such iteration returns a list of key-value pairs in the order they were 
inserted into the dictionary

Key: processor, value: Intel
Key: disk, value: HDD
Key: mouse, value: Logitech

computer = {
"processor" : "Intel", 
"disk" : "HDD",
"mouse" : "Logitech",
}

for key, value in computer.items():
print(f"Key: {key}, value: {value}")



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 22/42

Python Python -- dictionary, operationsdictionary, operations
 the keys() method returns a view containing the dictionary's keys

 the same result can be obtained by omitting keys(), but the code 
becomes less explicit

processor
disk
mouse

computer = {
"processor" : "Intel", 
"disk" : "HDD",
"mouse" : "Logitech",
}

for name in computer.keys():
print(name)

for name in computer:
print(name)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 23/42

Python Python -- dictionary, operationsdictionary, operations
 the values() method returns a view containing the dictionary's values

 the view can be converted into a list

Intel
HDD
Logitech

computer = {
"processor" : "Intel", 
"disk" : "HDD",
"mouse" : "Logitech",
}

for name in computer.values():
print(name)

my_list = list(computer.values())
print(my_list)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 24/42

Python Python -- dictionary, operationsdictionary, operations
 dictionary keys or values can be sorted during iteration

 to ensure that displayed values do not repeat, a set should be used

HDD
Intel
Logitech

computer = {
"processor" : "Intel", 
"disk" : "HDD",
"mouse" : "Logitech",
}

for name in sorted(computer.values()):
print(name)

for name in set(computer.values()):
print(name)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 25/42

Python Python -- dictionary, operationsdictionary, operations
 nesting - a dictionary containing lists

programming = {
"John" : ["C", "Python"],
"Paul" : ["C", "C++", "Python"],
"Mike" : ["Python"], 

}

for name, languages in programming.items():
if len(languages) == 1:

print(f"{name} knows language:")
else:

print(f"{name} knows languages:")
for language in languages:

print(f"{language}", end = ", ")
print("")

John knows languages:
C, Python,
Paul knows languages:
C, C++, Python,
Mike knows language:
Python,



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 26/42

Python Python -- dictionary, operationsdictionary, operations
 nesting - a list containing dictionaries

 all dictionaries in the list should have the same structure to allow 
iteration over the list

PC1 = {"processor" : "AMD", "disk" : "SSD"}
PC2 = {"processor" : "Intel", "disk" : "HDD"}
PC3 = {"processor" : "Intel", "disk" : "SSD"}

computers = [PC1, PC2, PC3]

for PC in computers:
print(PC)

{'processor': 'AMD', 'disk': 'SSD'}
{'processor': 'Intel', 'disk': 'HDD'}
{'processor': 'Intel', 'disk': 'SSD'}



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 27/42

Python Python -- dictionary, operationsdictionary, operations
 operations on a dictionary and a list

cars = {
"John" : "Opel",
"Paul" : "BMW",
"Mike" : "Audi",
"Bart" : "BMW", 
}

colleagues = ["Paul", "Alex", "Mike", "George"]

for name in colleagues:
if name not in cars.keys():

print(f"{name} – no car")
if name in cars.keys():

print(f"{name} has a car: {cars[name]}")

Paul has a car: BMW
Alex – no car
Mike has a car: Audi
George – no car



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 28/42

Python Python -- dictionary, data readingdictionary, data reading
 reading data from the keyboard directly into a dictionary

drivers = {}
reading = True

while reading:
name = input("Enter the driver's name: ")
brand = input("Enter the car brand: ")
drivers[name] = brand

ans = input("Continue? (yes/no): ")
if ans == "no":

reading = False

print("Data: ")
for name, brand in drivers.items():

print(f"{name} has a {brand} car")



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 29/42

Python Python -- dictionary, data readingdictionary, data reading
 reading data from the keyboard directly into a dictionary

drivers = {}
reading = True

while reading:
name = input("Enter the driver's name: ")
brand = input("Enter the car brand: ")
drivers[name] = brand

ans = input("Continue? (yes/no): ")
if ans == "no":

reading = False

print("Data: ")
for name, brand in drivers.items():

print(f"{name} has a {brand} car")

Enter the driver's name: Alex
Enter the car brand: BMW
Continue? (yes/no): yes
Enter the driver's name: Paul
Enter the car brand: Audi
Continue? (yes/no): yes
Enter the driver's name: Kate
Enter the car brand: KIA
Continue? (yes/no): no
Data: 
Alex has a BMW car
Paul has a Audi car
Kate has a KIA car



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 30/42

Python Python -- dictionary, nestingdictionary, nesting
 nesting a dictionary inside another dictionary

student = {
"name" : "John",
"surname" : "Smith",
"grades" : {

"Metrology" : 4.5,
"Physics" : 3.0,
"Mathematics" : 4.0

}
}

print(f"Name: {student["name"]}")
print(f"Surname: {student["surname"]}")

print("Grades:")
for subject, grade in student["grades"].items():

print(f"{subject}: {grade}")

Name: John
Surname: Smith
Grades:
Metrology: 4.5
Physics: 3.0
Mathematics: 4.0



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 31/42

Python Python -- setset
 Set - a collection of unique elements that are unordered

 sets can be created using curly braces {} or the built-in set() function
 creating an empty set:

empty1 = {}
print(empty1)

{}

empty2 = set()
print(empty2)

set()



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 32/42

Python Python -- set, creation methodsset, creation methods
 creating a set using curly braces

 creating a set from a list of elements using the set() function

 duplicate elements will be automatically removed

{'D', 'A', 'B', 'E', 'C'}

letters = {"A", "B", "C", "D", "E"}
print(letters)

{'A', 'C', 'B'}

letters = set(["A", "B", "C", "C", "B"]) 
print(letters)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 33/42

Python Python -- set, operationsset, operations
 adding a single element to a set - add() method

 adding multiple elements to a set - update() method

{0, 1, 2, 3, 4}

numbers = {1, 2, 3, 4}
numbers.add(0)
print(numbers)

{0, 1, 2, 3, 4, 5, 6}

numbers = {1, 2, 3, 4}
numbers.update([0, 5, 6])
print(numbers)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 34/42

Python Python -- set, operationsset, operations
 removing an element from a set - remove() method

 if the element does not exist in the set, remove() will raise an exception

{2, 3, 4}

numbers = {1, 2, 3, 4}
numbers.remove(1)
print(numbers)

Traceback (most recent call last):
File "d:\MyApp.py", line 2, in <module>

numbers.remove(0)
KeyError: 0

numbers = {1, 2, 3, 4}
numbers.remove(0)
print(numbers)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 35/42

Python Python -- set, operationsset, operations
 removing an element from a set - discard() method

 if the element does not exist in the set, discard() does not raise an error

{2, 3, 4}

numbers = {1, 2, 3, 4}
numbers.discard(1)
print(numbers)

numbers = {1, 2, 3, 4}
numbers.discard(0)
print(numbers)

{1, 2, 3, 4}



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 36/42

Python Python -- set, mathematical operationsset, mathematical operations
 union of two sets - union() method

{1, 2, 3, 4, 5, 6}

numbers1 = {1, 2, 3, 4}
numbers2 = {3, 4, 5, 6}
sum12 = numbers1.union(numbers2)
print(sum12)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 37/42

Python Python -- set, mathematical operationsset, mathematical operations
 intersection of two sets - intersection() method

{3, 4}

numbers1 = {1, 2, 3, 4}
numbers2 = {3, 4, 5, 6}
common12 = numbers1.intersection(numbers2)
print(common12)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 38/42

Python Python -- set, mathematical operationsset, mathematical operations
 difference of two sets - difference() method

{1, 2}

numbers1 = {1, 2, 3, 4}
numbers2 = {3, 4, 5, 6}
diff12 = numbers1.difference(numbers2)
print(diff12)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 39/42

Python Python -- set, mathematical operationsset, mathematical operations
 symmetric difference of two sets - symmetric_difference() method

 this method returns a set containing elements that are present in only 
one of the two sets, but not in both at the same time

{1, 2, 5, 6}

numbers1 = {1, 2, 3, 4}
numbers2 = {3, 4, 5, 6}
diff12 = numbers1. symmetric_difference(numbers2)
print(diff12)



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 40/42

Python Python -- set, in operatorset, in operator
 the in operator is used to check if an element is in a set

Enter a number: 6
Element 6 is in the set

numbers = {1, 2, 3, 4, 5, 6}
num = int(input("Enter a number: "))

if num in numbers:
print(f"Element {num} is in the set")

else:
print(f"Element {num} is not in the set")

Enter a number: 0
Element 0 is not in the set



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 41/42

Python Python -- set, not in operator set, not in operator 
 the not in operator is used to check if an element is not in a set

Enter a number: 6
Element 6 is in the set

numbers = {1, 2, 3, 4, 5, 6}
num = int(input("Enter a number: "))

if num not in numbers:
print(f"Element {num} is not in the set")

else:
print(f"Element {num} is in the set")

Enter a number: 0
Element 0 is not in the set



Python Programming 1 (CP1S02005E)                                               Jarosław Forenc, PhD 
Academic year 2024/2025, Lecture no. 5 42/42

End of lecture no. End of lecture no. 55

Thank you for your attention!Thank you for your attention!


