
Python Programming 1Python Programming 1

BiałystokBiałystok University of TechnologyUniversity of Technology
Faculty of Electrical EngineeringFaculty of Electrical Engineering

Industry Digitization, semester IIndustry Digitization, semester III
Academic year 2024/2025Academic year 2024/2025

Lecture no. 0Lecture no. 088 ((2323.0.044.2025).2025)

Jarosław Forenc, PhD

(CP1S02005E)(CP1S02005E)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 2/28

TopicsTopics
 Files in Python

 opening a file - open() function
 closing a file - close() method
 reading from a text file
 writing to a text file
 CSV format

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 3/28

Python Python -- files (opening a file)files (opening a file)
 to open a file, use the built-in open() function

 file - the name of the file along with its path

 mode - the file opening mode:

 'r' - opens the file for reading (default)

 'w' - opens the file for writing; if the file already exists, its content
will be erased; if it doesn't exist, a new file will be created

 'a' - opens the file for appending; new content will be added
at the end of the existing content

 'r+' - opens the file for both reading and writing

 'b' - binary mode, used to open the file in binary mode
(e.g. 'rb', 'wb', 'ab')

open(file, mode='r', buffering=-1, encoding=None)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 4/28

Python Python -- files (opening a file)files (opening a file)
 to open a file, use the built-in open() function

 buffering - determines whether data is buffered; the default is -1,
which means the default buffering settings are used; you can provide 0
to disable buffering or a value greater than 0 to specify the buffer size

 encoding - the encoding used for a text file; the default is None,
which means the default encoding of the environment is used,
e.g. 'utf-8', 'utf-16', 'utf-32', 'ascii'

 the open() function returns a file object, which is used to perform file
operations; this object is usually assigned to a variable

open(file, mode='r', buffering=-1, encoding=None)

file = open("file_name.txt", "w")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 5/28

Python Python -- files (opening a file, examples)files (opening a file, examples)
 opening the file data.txt for reading (default text mode)

 opening the file date.txt located on disk D in the results directory for
appending (default text mode)

 opening the file data.txt for reading and writing (default text mode)

 opening the file data.dat for reading and writing in binary mode

file = open("data.txt", "r")

file = open("d:/results/data.txt", "a")

file = open("data.txt", "r+")

file = open("results/data.dat", "rb+")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 6/28

Python Python -- files (opening a file)files (opening a file)
 trying to open a non-existent file for reading

will result in an error and raise a FileNotFoundError exception

file = open("data.txt", "r")
file operations
file.close()

Traceback (most recent call last):
File "d:\myapp.py", line 1, in <module>

file = open("data.txt", "r")
^^^^^^^^^^^^^^^^^^^^^

FileNotFoundError: [Errno 2] No such file or
directory: 'data.txt'

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 7/28

Python Python -- files (opening a file)files (opening a file)
 to prevent opening a non-existent file, you can use exception handling

(try-except section)

try:
file = open("data.txt", "r")
file operations
file.close()

except FileNotFoundError:
print("File does not exist.")

File does not exist.

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 8/28

Python Python -- files (closing a file)files (closing a file)
 to close the file, the close() method is used, which is called on the file

object after the operation on it is completed

 closing a file is important because it frees up system resources
used by the file and ensures that all buffered data is written to disk

 after calling the close() method, further operations on the file using
the same object will not be possible and will raise an exception:
ValueError: I/O operation on closed file

file = open("data.txt", "w")

file operations

file.close()

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 9/28

Python Python -- files (opening and closing a file)files (opening and closing a file)
 instead of the traditional method of opening and closing a file:

 it is recommended to use the with statement, which ensures the file
is automatically closed after the with block is exited

 this helps avoid issues related to unclosed files and results in cleaner,
more readable code

file = open("data.txt", "w")
file operations
file.close()

with open("data.txt", "r") as file:
file operations

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 10/28

Python Python -- files (reading from text file)files (reading from text file)
 the read() method reads the entire contents of a file as a single string

 the readline() method reads the next line of text from the file

with open("file_name.txt", "r") as file:
content = file.read()
print(content)

with open("file_name.txt", "r") as file:
line = file.readline()
while line:

print(line)
line = file.readline()

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 11/28

Python Python -- files (reading from text file)files (reading from text file)
 the readlines() method reads all lines from the file and returns them

as a list of strings

 you can also use a for loop to iterate over a file; each line in the file
will be treated as the next iterable element

 setting end="" in the print() function means that it will not automatically
add a newline character after each line read from the file, which helps
avoid double spacing between lines

with open("file_name.txt", "r") as file:
lines = file.readlines()
for line in lines:

print(lines)

with open("file_name.txt", "r") as file:
for line in file:

print(file, end="")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 12/28

Python Python -- files (reading from text file, example)files (reading from text file, example)
 contents of the file data.txt

 displaying the contents of the file with line numbering

with open("data.txt", "r", encoding = "utf-8") as file:
line_number = 1
line = file.readline()
while line:

print(f"{line_number}: {line}", end="")
line = file.readline()
line_number += 1

Jarosław Kamiński
Grażyna Wójcik
Piotr Wiśniewski

1: Jarosław Kamiński
2: Grażyna Wójcik
3: Piotr Wiśniewski

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 13/28

Python Python -- files (reading from text file, example)files (reading from text file, example)
 if character encoding is not specified, the text may be displayed incorrectly

 this is due to differences between the character encoding used when
the file was created and the one used for displaying it

with open("data.txt", "r") as file:
line_number = 1
line = file.readline()
while line:

print(f"{line_number}: {line}", end="")
line = file.readline()
line_number += 1

1: JarosĹ‚aw KamiĹ„ski
2: GraĹĽyna WĂłjcik
3: Piotr WiĹ›niewski

import os
os.system("chcp")

Active code page: 852

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 14/28

Python Python -- files (reading from text file, example)files (reading from text file, example)
 the text file contains integers
 calculating and displaying the sum and arithmetic mean of the numbers

with open("numbers.txt", "r") as file:
sum = 0
number_of_elements = 0
line = file.readline()
while line:

number = int(line)
sum += number
number_of_elements += 1
line = file.readline()

average = sum / number_of_elements
print("Sum of numbers from file:", sum)
print("Arithmetic mean of numbers from file:", average)

23
18
-11
53
6

Sum of numbers from file: 89
Arithmetic mean of numbers from file: 17.8

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 15/28

Python Python -- files (reading from text file, example)files (reading from text file, example)
 sum and average of numbers from a text file with error handling

try:
with open("numbers.txt", "r") as file:

sum = 0
number_of_elements = 0
line = file.readline()
while line:

number = int(line)
sum += number
number_of_elements += 1
line = file.readline()

average = sum / number_of_elements
print("Sum of numbers from file:", sum)
print("Arithmetic mean of numbers from file:", average)

except FileNotFoundError:
print("File 'numbers.txt' not found.")

except ValueError:
print("Error converting data to integer.")

except IOError:
print("An error occurred while reading the file.")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 16/28

Python Python -- files (saving to text file)files (saving to text file)
 the write() method is used to write single lines or fragments of text

to an open text file

 the writelines() method is used to write multiple lines of text at once;
it takes a list of strings as an argument

with open("output.txt", "w") as file:
file.write("This is the first line.\n")
file.write("This is the second line.\n")

lines = ["The first line.\n", "The second line.\n"]
with open("output.txt", "w") as file:

file.writelines(lines)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 17/28

Python Python -- files (saving to text file)files (saving to text file)
 the print() function has an optional file parameter that allows you to write

text to a specified file instead of to the standard output (e.g., the screen)

 the data written to the file can be formatted

with open("output.txt", "w") as file:
name = "John"
age = 30
file.write(f"Name: {name}, Age: {age}\n")

with open("output.txt", "w") as file:
print("The first line.", file=file)
print("The second line.", file=file)

Name: John, Age: 30

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 18/28

Python Python -- files (saving to text file, example)files (saving to text file, example)
 saving 10 pseudo-random real numbers in a text file; each number should

be in the range from 0 to 99, rounded to 3 decimal places

 the random.uniform(a, b) function from the random module
generates pseudo-random real numbers in the interval [a, b]

 the round(number, ndigits) function rounds a number
to the specified number of decimal places, where number
is the value to round, and ndigits is the number of digits
after the decimal point

import random

num = [round(random.uniform(0, 99), 3) for _ in range(10)]

with open("numbers.txt", "w") as file:
for number in num:

file.write(f"{number:.3f}\n")
print("The numbers have been saved.")

56.766
7.212
10.048
43.205
60.943
69.050
90.860
42.654
85.622
6.440

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 19/28

Python Python -- CSV format CSV format
 CSV (Comma-Separated Values) - a simple format for storing tabular data,

where each row represents a single record and the values are separated
by a delimiter (most commonly a comma)

 the delimiter can also be a semicolon, space, tab, etc.
 example of a CSV file (oscilloscope data):

 each data row is separated from the next by a newline character
 the first row in a CSV file often contains column headers that describe

the content of each column

X,CH1,
Second,Volt,
-3.00000e-04,-3.20e-01,
-2.99000e-04,-6.40e-01,
-2.98000e-04,-7.20e-01,
-2.97000e-04,-1.04e+00,

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 20/28

Python Python -- CSV format (example no. 1) CSV format (example no. 1)
 loading a CSV file with oscilloscope data and creating a plot using NumPy

and Matplotlib libraries
 the libraries need to be installed - in the Terminal window, enter:

pip install matplotlib numpy

import matplotlib.pyplot as plt
import numpy as np
import csv

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 21/28

Python Python -- CSV format (example no. 1)CSV format (example no. 1)

Loading data from a CSV file
x_data = []
y_data = []

with open('d:/results.csv', 'r') as file:
reader = csv.reader(file)
next(reader) # Skip the header row
next(reader) # Skip the header row
for row in reader:

Store data in appropriate lists
x_data.append(float(row[0]))
y_data.append(float(row[1]))

Convert lists to numpy arrays for easier processing
x_data = np.array(x_data)
y_data = np.array(y_data)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 22/28

Python Python -- CSV format (example no. 1)CSV format (example no. 1)

Plotting the graph
plt.plot(x_data, y_data, label='U')

Setting axis labels
plt.xlabel('t, s')
plt.ylabel('U, V')

Chart title
plt.title('Triangular signal')

Adding a legend
plt.legend()

Enabling the grid
plt.grid(True)

Displaying the plot
plt.show()

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 23/28

Python Python -- CSV format (example no. 1)CSV format (example no. 1)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 24/28

PythonPython -- CSV format (CSV format (exampleexample no. 1)no. 1)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 25/28

PythonPython -- CSV format (CSV format (exampleexample no. 2)no. 2)
 list of male names in the PESEL register as of 19/01/2024 - first name

(https://dane.gov.pl/pl/dataset/1667,lista-imion-wystepujacych-w-rejestrze-
pesel-osoby-zyjace)

FIRST_NAME,GENDER,NUMBER_OF_OCCURRENCES
PIOTR,MALE,689313
KRZYSZTOF,MALE,641406
TOMASZ,MALE,536774
ANDRZEJ,MALE,533141
PAWEŁ,MALE,506006
MICHAŁ,MALE,492093
JAN,MALE,477845
MARCIN,MALE,449607
JAKUB,MALE,426709
ADAM,MALE,401674
ŁUKASZ,MALE,383582
MAREK,MALE,378001
...

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 26/28

 csv.DictReader() creates a CSV reader that automatically interprets
the first row as column headers

 The fieldnames parameter contains the column headers as a list
 each row of data is represented as a dictionary, where the keys

are the column headers and the values are the corresponding data

Python Python -- CSV format (example no. 2)CSV format (example no. 2)

import csv

Open the CSV file for reading
with open('name.csv', newline='', encoding="utf-8") as file:

Create a CSV reader
reader = csv.DictReader(plik)

Display column headers
print("Column headers:", reader.fieldnames)

Iterate through each row of data
for row in reader:

Display the data in each row
print(row)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 27/28

Python Python -- CSV format (example no. 2)CSV format (example no. 2)
 result of running the program

Column headers: ['FIRST_NAME', 'GENDER', 'NUMBER_OF_OCCURRENCES']
{'FIRST_NAME': 'PIOTR', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '689313'}
{'FIRST_NAME': 'KRZYSZTOF', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '641406'}
{'FIRST_NAME': 'TOMASZ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '536774'}
{'FIRST_NAME': 'ANDRZEJ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '533141'}
{'FIRST_NAME': 'PAWEŁ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '506006'}
{'FIRST_NAME': 'MICHAŁ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '492093'}
{'FIRST_NAME': 'JAN', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '477845'}
{'FIRST_NAME': 'MARCIN', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '449607'}
{'FIRST_NAME': 'JAKUB', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '426709'}
{'FIRST_NAME': 'ADAM', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '401674'}
{'FIRST_NAME': 'ŁUKASZ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '383582'}
{'FIRST_NAME': 'MAREK', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '378001'}
{'FIRST_NAME': 'MATEUSZ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '377011'}
{'FIRST_NAME': 'GRZEGORZ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '374820'}
{'FIRST_NAME': 'STANISŁAW', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '366180'}
{'FIRST_NAME': 'WOJCIECH', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '335311'}
{'FIRST_NAME': 'MARIUSZ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '286869‘}

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 28/28

End of lecture no. End of lecture no. 88

Thank you for your attention!Thank you for your attention!

