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Python - files (opening a file)

o to open a file, use the built-in open() function

open(file, mode='r', buffering=-1, encoding=None)

o file - the name of the file along with its path
o mode - the file opening mode:
m 't - opens the file for reading (default)

= 'W' - opens the file for writing; if the file already exists, its content
will be erased; if it doesn't exist, a new file will be created

m '3’ - opens the file for appending; new content will be added
at the end of the existing content

= 'r+' - opens the file for both reading and writing

= 'b'- binary mode, used to open the file in binary mode
(e.g. 'rb', 'wb', 'ab")
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Python - files (opening a file)

o to open a file, use the built-in open() function

open(file, mode='r', buffering=-1, encoding=None)

o buffering - determines whether data is buffered; the default is -1,
which means the default buffering settings are used; you can provide 0
to disable buffering or a value greater than 0 to specify the buffer size

0 encoding - the encoding used for a text file; the default is None,
which means the default encoding of the environment is used,
e.g. 'utf-8', 'utf-16', 'utf-32', 'ascii’

o the open() function returns a file object, which is used to perform file
operations; this object is usually assigned to a variable

file = open("file_name.txt", "w")
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Python - files (opening a file, examples)

O opening the file data.txt for reading (default text mode)

file = open("data.txt", "r")

o opening the file date.txt located on disk D in the results directory for
appending (default text mode)

file = open("d:/results/data.txt", "a")

O opening the file data.txt for reading and writing (default text mode)

file = open("data.txt", "r+")

o opening the file data.dat for reading and writing in binary mode

file = open("results/data.dat", "rb+")
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Python - files (opening a file)

O

trying to open a non-existent file for reading

file = open("data.txt", "r")
# file operations
file.close()

will result in an error and raise a FileNotFoundError exception

Traceback (most recent call last):
File "d:\myapp.py", line 1, in <module>
file = open("data.txt", "r"
AAAAAAAANAAANAAAAANAAANAAANAANAAN
FileNotFoundError: [Errno 2] No such file or
directory: 'data.txt'
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Python - files (opening a file)

0 to prevent opening a non-existent file, you can use exception handling
(try-except section)

try:
file = open("data.txt"™, "r")
# file operations
file.close()

except FileNotFoundError:
print("File does not exist.")

File does not exist.
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Python - files (closing a file)

o to close the file, the close() method is used, which is called on the file
object after the operation on it is completed

file = open("data.txt", "w")
# file operations
file.close()

o closing a file is important because it frees up system resources
used by the file and ensures that all buffered data is written to disk

o  after calling the close() method, further operations on the file using
the same object will not be possible and will raise an exception:
ValueError: I/O operation on closed file
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Python - files (opening and closing a file)

o instead of the traditional method of opening and closing a file:

file = open("data.txt", "w")
# file operations
file.close()

o it is recommended to use the with statement, which ensures the file
is automatically closed after the with block is exited

with open("data.txt", "r") as file:
# file operations

o this helps avoid issues related to unclosed files and results in cleaner,
more readable code
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Python - files (reading from text file)

O

the read() method reads the entire contents of a file as a single string

with open("file_name.txt", "r") as file:
content = file.read()
print(content)

the readline() method reads the next line of text from the file

with open("file_name.txt", "r") as file:
line = file.readline()
while line:
print(line)
line = file.readline()
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Python - files (reading from text file)

o the readlines() method reads all lines from the file and returns them
as a list of strings

with open("file_name.txt", "r") as file:
lines = file.readlines()
for line in lines:
print(lines)

O  you can also use a for loop to iterate over a file; each line in the file
will be treated as the next iterable element

with open("file_name.txt", "r") as file:
for line in file:
print(file, end="")

o setting end="" in the print() function means that it will not automatically
add a newline character after each line read from the file, which helps
avoid double spacing between lines
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Python - files (reading from text file, example)

o contents of the file data.txt

Jarostaw Kaminski
Grazyna Wéjcik
Piotr Wisniewski

o displaying the contents of the file with line numbering

line_number = 1

line = file.readline()

while line:
print(f"{line_number}: {line}", end="")
line = file.readline()
line_number += 1

with open("data.txt", "r", encoding = "utf-8") as file:

1: Jarostaw Kaminski
2: Grazyna Woéjcik
3: Piotr Wisniewski
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Python - files (reading from text file, example)

o if character encoding is not specified, the text may be displayed incorrectly

with open("data.txt", "r") as file:
line_number = 1
line = file.readline()
while line:
print(f"{line_number}: {line}", end="")
line = file.readline()
line_number += 1

1: Jarosl, aw Kamil., ski
2: GralLLyna WAtjcik
3: Piotr Wili>niewski

o this is due to differences between the character encoding used when

the file was created and the one used for displaying it

import os
os.system("chcp")

Active code page:

852
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Python - files (reading from text file,

o the text file contains integers

example)

o calculating and displaying the sum and arithmetic mean of the numbers

with open("numbers.txt", "r") as file:
sum = 0O
number_of elements = ©
line = file.readline()
while line:
number = int(line)
sum += number
number_of elements += 1
line = file.readline()
average = sum / number_of_elements
print("Sum of numbers from file:", sum)

23
18
-11
53
6

print("Arithmetic mean of numbers from file:", average)

Sum of numbers from file: 89

Arithmetic mean of numbers from file: 17.

8
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Python - files (reading from text file, example)

O sum and average of numbers from a text file with error handling

try:
with open("numbers.txt", "r") as file:
sum = 0
number_of_elements = 0
line = file.readline()
while line:
number = int(line)
sum += number
number_of_elements += 1
line = file.readline()
average = sum / number_of_elements
print("Sum of numbers from file:", sum)

except FileNotFoundError:

print("File 'numbers.txt' not found.")
except ValueError:

print("Error converting data to integer.")
except IOError:

print("Arithmetic mean of numbers from file:", average)

print("An error occurred while reading the file.")
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Python - files (saving to text file)

o the write() method is used to write single lines or fragments of text
to an open text file

with open("output.txt", "w") as file:
file.write("This is the first line.\n")
file.write("This is the second line.\n")

o the writelines() method is used to write multiple lines of text at once;
it takes a list of strings as an argument

lines = ["The first line.\n", "The second line.\n"]
with open("output.txt", "w") as file:
file.writelines(lines)
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Python - files (saving to text file)

o the print() function has an optional file parameter that allows you to write
text to a specified file instead of to the standard output (e.g., the screen)

with open("output.txt", "w") as file:
print("The first line.", file=file)
print("The second line.", file=file)

o the data written to the file can be formatted

with open("output.txt", "w") as file:
name = "John"
age = 30
file.write(f"Name: {name}, Age: {age}\n")

Name: John, Age: 30
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Python - files (saving to text file, example)

o saving 10 pseudo-random real numbers in a text file; each number should
be in the range from 0 to 99, rounded to 3 decimal places

import random

num = [round(random.uniform(@, 99), 3) for _ in range(10)]

with open("numbers.txt", "w") as file:

for number in num:

file.write(f"{number:.3f}\n") 56.766

o . 7.212
print("The numbers have been saved.") 10.048
43.205
o the random.uniform(a, b) function from the random module 22-(9)453
generates pseudo-random real numbers in the interval [a, b] 50 860
o the round(number, ndigits) function rounds a number 42.654
to the specified number of decimal places, where number 85.622

is the value to round, and ndigits is the number of digits 6.440

after the decimal point
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Python - CSV format

o CSV (Comma-Separated Values) - a simple format for storing tabular data,
where each row represents a single record and the values are separated
by a delimiter (most commonly a comma)

o the delimiter can also be a semicolon, space, tab, etc.
o example of a CSV file (oscilloscope data):

X,CH1,

Second,Volt,
-3.00000e-04,-3.20e-01,
-2.99000e-04,-6.40e-01,
-2.98000e-04,-7.20e-01,
-2.97000e-04,-1.04e+00,

0 each data row is separated from the next by a newline character

o the first row in a CSV file often contains column headers that describe
the content of each column
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Python - CSV format (example no. 1)

o loading a CSV file with oscilloscope data and creating a plot using NumPy
and Matplotlib libraries

o the libraries need to be installed - in the Terminal window, enter:
pip install matplotlib numpy

import matplotlib.pyplot as plt
import numpy as np
import csv
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Python - CSV format (example no. 1)

# Loading data from a CSV file
x_data = []
y _data = []

with open('d:/results.csv’', 'r') as file:
reader = csv.reader(file)
next(reader) # Skip the header row
next(reader) # Skip the header row
for row in reader:
# Store data in appropriate lists
x_data.append(float(row[0]))
y_data.append(float(row[1]))

# Convert lists to numpy arrays for easier processing
x_data = np.array(x_data)
y _data = np.array(y_data)
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Python - CSV format (example no. 1)

# Plotting the graph
plt.plot(x_data, y _data, label='U")

# Setting axis labels
plt.xlabel('t, s')
plt.ylabel('U, V')

# Chart title
plt.title('Triangular signal')

# Adding a legend
plt.legend()

# Enabling the grid
plt.grid(True)

# Displaying the plot
plt.show()
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Python - CSV format (example no. 1)

3;\ Figure 1 e O X

Triangular signal

-0.00010 —0.00005 0.00000 0.00005 0.00010
t,s

$ Q=
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Python - CSV format (example no. 1)

Triangular signal

T T T T T
—0.00010 —0.00005 0.00000 0.00005 0.00010
t. s
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Python - CSV format (example no. 2)

o list of male names in the PESEL register as of 19/01/2024 - first name

(https://dane.qgov.pl/pl/dataset/ 1667, lista-imion-wystepujacych-w-rejestrze-
pesel-osoby-zyjace)

FIRST NAME,GENDER,NUMBER OF OCCURRENCES
PIOTR,MALE, 689313
KRZYSZTOF ,MALE, 641406
TOMASZ ,MALE, 536774
ANDRZEJ,MALE, 533141
PAWEE,MALE, 506006
MICHAL MALE, 492093
JAN ,MALE, 477845
MARCIN,MALE, 449607
JAKUB,MALE, 426709
ADAM,MALE, 401674

L UKASZ ,MALE,b 383582
MAREK ,MALE , 378001
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Python - CSV format (example no. 2)

import csv

# Open the CSV file for reading
with open('name.csv', newline='"', encoding="utf-8") as file:

# Create a CSV reader
reader = csv.DictReader(plik)

# Display column headers
print("Column headers:", reader.fieldnames)

# Iterate through each row of data
for row in reader:
# Display the data in each row
print(row)

o csv.DictReader() creates a CSV reader that automatically interprets
the first row as column headers

o The fieldnames parameter contains the column headers as a list

o each row of data is represented as a dictionary, where the keys
are the column headers and the values are the corresponding data
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Python - CSV format (example no. 2)

o  result of running the program

Column headers: ['FIRST_NAME', 'GENDER', 'NUMBER_QF_QCCURRENCES']

{'FIRST NAME': 'PIOTR', 'GENDER': 'MALE', 'NUMBER OF OCCURRENCES': '689313'}
{'FIRST_NAME': '"KRZYSZTOF', 'GENDER': 'MALE', 'NUMBER_QF_QCCURRENCES': '641406'}
{'FIRST_NAME': '"TOMASZ', 'GENDER': 'MALE', 'NUMBER_QF_QCCURRENCES': '536774"'}
{'FIRST_NAME': '"ANDRZEJ', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '533141"'}
{'FIRST_NAME': 'PAWELZ', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '506006'}
{'FIRST_NAME': 'MICHALZ', 'GENDER': 'MALE', 'NUMBER_QF_QCCURRENCES': '492093'}
{'FIRST_NAME': 'JAN', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '477845"'}
{'FIRST_NAME': '"MARCIN', 'GENDER': 'MALE', 'NUMBER_QF_QCCURRENCES': 1449607 '}
{'FIRST_NAME': '"'JAKUB', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '426709'}
{'FIRST_NAME': '"ADAM', 'GENDER': 'MALE', 'NUMBER_QF_QCCURRENCES': '401674"'}
{'FIRST_NAME': 'LUKASZ', 'GENDER': 'MALE', 'NUMBER_QF_QCCURRENCES': '383582'}
{'FIRST_NAME': '"MAREK', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '378001"'}
{'FIRST_NAME': '"MATEUSZ', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '377011"'}
{'FIRST_NAME': '"GRZEGORZ', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '374820'}
{'FIRST_NAME': 'STANISEAW', 'GENDER': 'MALE', 'NUMBER_QF_QCCURRENCES': '366180'}
{'FIRST_NAME': '"'WOJCIECH', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '335311"'}
{'FIRST_NAME': '"MARIUSZ', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': 1286869}
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End of lecture no. 8

Thank you for your attention!



