
Python Programming 1Python Programming 1

BiałystokBiałystok University of TechnologyUniversity of Technology
Faculty of Electrical EngineeringFaculty of Electrical Engineering

Industry Digitization, semester IIndustry Digitization, semester III
Academic year 2024/2025Academic year 2024/2025

Lecture no. 0Lecture no. 088 ((2323.0.044.2025).2025)

Jarosław Forenc, PhD

(CP1S02005E)(CP1S02005E)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 2/28

TopicsTopics
 Files in Python

 opening a file - open() function
 closing a file - close() method
 reading from a text file
 writing to a text file
 CSV format

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 3/28

Python Python -- files (opening a file)files (opening a file)
 to open a file, use the built-in open() function

 file - the name of the file along with its path

 mode - the file opening mode:

 'r' - opens the file for reading (default)

 'w' - opens the file for writing; if the file already exists, its content
will be erased; if it doesn't exist, a new file will be created

 'a' - opens the file for appending; new content will be added
at the end of the existing content

 'r+' - opens the file for both reading and writing

 'b' - binary mode, used to open the file in binary mode
(e.g. 'rb', 'wb', 'ab')

open(file, mode='r', buffering=-1, encoding=None)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 4/28

Python Python -- files (opening a file)files (opening a file)
 to open a file, use the built-in open() function

 buffering - determines whether data is buffered; the default is -1,
which means the default buffering settings are used; you can provide 0
to disable buffering or a value greater than 0 to specify the buffer size

 encoding - the encoding used for a text file; the default is None,
which means the default encoding of the environment is used,
e.g. 'utf-8', 'utf-16', 'utf-32', 'ascii'

 the open() function returns a file object, which is used to perform file
operations; this object is usually assigned to a variable

open(file, mode='r', buffering=-1, encoding=None)

file = open("file_name.txt", "w")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 5/28

Python Python -- files (opening a file, examples)files (opening a file, examples)
 opening the file data.txt for reading (default text mode)

 opening the file date.txt located on disk D in the results directory for
appending (default text mode)

 opening the file data.txt for reading and writing (default text mode)

 opening the file data.dat for reading and writing in binary mode

file = open("data.txt", "r")

file = open("d:/results/data.txt", "a")

file = open("data.txt", "r+")

file = open("results/data.dat", "rb+")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 6/28

Python Python -- files (opening a file)files (opening a file)
 trying to open a non-existent file for reading

will result in an error and raise a FileNotFoundError exception

file = open("data.txt", "r")
file operations
file.close()

Traceback (most recent call last):
File "d:\myapp.py", line 1, in <module>

file = open("data.txt", "r")
^^^^^^^^^^^^^^^^^^^^^

FileNotFoundError: [Errno 2] No such file or
directory: 'data.txt'

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 7/28

Python Python -- files (opening a file)files (opening a file)
 to prevent opening a non-existent file, you can use exception handling

(try-except section)

try:
file = open("data.txt", "r")
file operations
file.close()

except FileNotFoundError:
print("File does not exist.")

File does not exist.

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 8/28

Python Python -- files (closing a file)files (closing a file)
 to close the file, the close() method is used, which is called on the file

object after the operation on it is completed

 closing a file is important because it frees up system resources
used by the file and ensures that all buffered data is written to disk

 after calling the close() method, further operations on the file using
the same object will not be possible and will raise an exception:
ValueError: I/O operation on closed file

file = open("data.txt", "w")

file operations

file.close()

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 9/28

Python Python -- files (opening and closing a file)files (opening and closing a file)
 instead of the traditional method of opening and closing a file:

 it is recommended to use the with statement, which ensures the file
is automatically closed after the with block is exited

 this helps avoid issues related to unclosed files and results in cleaner,
more readable code

file = open("data.txt", "w")
file operations
file.close()

with open("data.txt", "r") as file:
file operations

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 10/28

Python Python -- files (reading from text file)files (reading from text file)
 the read() method reads the entire contents of a file as a single string

 the readline() method reads the next line of text from the file

with open("file_name.txt", "r") as file:
content = file.read()
print(content)

with open("file_name.txt", "r") as file:
line = file.readline()
while line:

print(line)
line = file.readline()

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 11/28

Python Python -- files (reading from text file)files (reading from text file)
 the readlines() method reads all lines from the file and returns them

as a list of strings

 you can also use a for loop to iterate over a file; each line in the file
will be treated as the next iterable element

 setting end="" in the print() function means that it will not automatically
add a newline character after each line read from the file, which helps
avoid double spacing between lines

with open("file_name.txt", "r") as file:
lines = file.readlines()
for line in lines:

print(lines)

with open("file_name.txt", "r") as file:
for line in file:

print(file, end="")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 12/28

Python Python -- files (reading from text file, example)files (reading from text file, example)
 contents of the file data.txt

 displaying the contents of the file with line numbering

with open("data.txt", "r", encoding = "utf-8") as file:
line_number = 1
line = file.readline()
while line:

print(f"{line_number}: {line}", end="")
line = file.readline()
line_number += 1

Jarosław Kamiński
Grażyna Wójcik
Piotr Wiśniewski

1: Jarosław Kamiński
2: Grażyna Wójcik
3: Piotr Wiśniewski

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 13/28

Python Python -- files (reading from text file, example)files (reading from text file, example)
 if character encoding is not specified, the text may be displayed incorrectly

 this is due to differences between the character encoding used when
the file was created and the one used for displaying it

with open("data.txt", "r") as file:
line_number = 1
line = file.readline()
while line:

print(f"{line_number}: {line}", end="")
line = file.readline()
line_number += 1

1: JarosĹ‚aw KamiĹ„ski
2: GraĹĽyna WĂłjcik
3: Piotr WiĹ›niewski

import os
os.system("chcp")

Active code page: 852

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 14/28

Python Python -- files (reading from text file, example)files (reading from text file, example)
 the text file contains integers
 calculating and displaying the sum and arithmetic mean of the numbers

with open("numbers.txt", "r") as file:
sum = 0
number_of_elements = 0
line = file.readline()
while line:

number = int(line)
sum += number
number_of_elements += 1
line = file.readline()

average = sum / number_of_elements
print("Sum of numbers from file:", sum)
print("Arithmetic mean of numbers from file:", average)

23
18
-11
53
6

Sum of numbers from file: 89
Arithmetic mean of numbers from file: 17.8

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 15/28

Python Python -- files (reading from text file, example)files (reading from text file, example)
 sum and average of numbers from a text file with error handling

try:
with open("numbers.txt", "r") as file:

sum = 0
number_of_elements = 0
line = file.readline()
while line:

number = int(line)
sum += number
number_of_elements += 1
line = file.readline()

average = sum / number_of_elements
print("Sum of numbers from file:", sum)
print("Arithmetic mean of numbers from file:", average)

except FileNotFoundError:
print("File 'numbers.txt' not found.")

except ValueError:
print("Error converting data to integer.")

except IOError:
print("An error occurred while reading the file.")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 16/28

Python Python -- files (saving to text file)files (saving to text file)
 the write() method is used to write single lines or fragments of text

to an open text file

 the writelines() method is used to write multiple lines of text at once;
it takes a list of strings as an argument

with open("output.txt", "w") as file:
file.write("This is the first line.\n")
file.write("This is the second line.\n")

lines = ["The first line.\n", "The second line.\n"]
with open("output.txt", "w") as file:

file.writelines(lines)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 17/28

Python Python -- files (saving to text file)files (saving to text file)
 the print() function has an optional file parameter that allows you to write

text to a specified file instead of to the standard output (e.g., the screen)

 the data written to the file can be formatted

with open("output.txt", "w") as file:
name = "John"
age = 30
file.write(f"Name: {name}, Age: {age}\n")

with open("output.txt", "w") as file:
print("The first line.", file=file)
print("The second line.", file=file)

Name: John, Age: 30

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 18/28

Python Python -- files (saving to text file, example)files (saving to text file, example)
 saving 10 pseudo-random real numbers in a text file; each number should

be in the range from 0 to 99, rounded to 3 decimal places

 the random.uniform(a, b) function from the random module
generates pseudo-random real numbers in the interval [a, b]

 the round(number, ndigits) function rounds a number
to the specified number of decimal places, where number
is the value to round, and ndigits is the number of digits
after the decimal point

import random

num = [round(random.uniform(0, 99), 3) for _ in range(10)]

with open("numbers.txt", "w") as file:
for number in num:

file.write(f"{number:.3f}\n")
print("The numbers have been saved.")

56.766
7.212
10.048
43.205
60.943
69.050
90.860
42.654
85.622
6.440

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 19/28

Python Python -- CSV format CSV format
 CSV (Comma-Separated Values) - a simple format for storing tabular data,

where each row represents a single record and the values are separated
by a delimiter (most commonly a comma)

 the delimiter can also be a semicolon, space, tab, etc.
 example of a CSV file (oscilloscope data):

 each data row is separated from the next by a newline character
 the first row in a CSV file often contains column headers that describe

the content of each column

X,CH1,
Second,Volt,
-3.00000e-04,-3.20e-01,
-2.99000e-04,-6.40e-01,
-2.98000e-04,-7.20e-01,
-2.97000e-04,-1.04e+00,

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 20/28

Python Python -- CSV format (example no. 1) CSV format (example no. 1)
 loading a CSV file with oscilloscope data and creating a plot using NumPy

and Matplotlib libraries
 the libraries need to be installed - in the Terminal window, enter:

pip install matplotlib numpy

import matplotlib.pyplot as plt
import numpy as np
import csv

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 21/28

Python Python -- CSV format (example no. 1)CSV format (example no. 1)

Loading data from a CSV file
x_data = []
y_data = []

with open('d:/results.csv', 'r') as file:
reader = csv.reader(file)
next(reader) # Skip the header row
next(reader) # Skip the header row
for row in reader:

Store data in appropriate lists
x_data.append(float(row[0]))
y_data.append(float(row[1]))

Convert lists to numpy arrays for easier processing
x_data = np.array(x_data)
y_data = np.array(y_data)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 22/28

Python Python -- CSV format (example no. 1)CSV format (example no. 1)

Plotting the graph
plt.plot(x_data, y_data, label='U')

Setting axis labels
plt.xlabel('t, s')
plt.ylabel('U, V')

Chart title
plt.title('Triangular signal')

Adding a legend
plt.legend()

Enabling the grid
plt.grid(True)

Displaying the plot
plt.show()

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 23/28

Python Python -- CSV format (example no. 1)CSV format (example no. 1)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 24/28

PythonPython -- CSV format (CSV format (exampleexample no. 1)no. 1)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 25/28

PythonPython -- CSV format (CSV format (exampleexample no. 2)no. 2)
 list of male names in the PESEL register as of 19/01/2024 - first name

(https://dane.gov.pl/pl/dataset/1667,lista-imion-wystepujacych-w-rejestrze-
pesel-osoby-zyjace)

FIRST_NAME,GENDER,NUMBER_OF_OCCURRENCES
PIOTR,MALE,689313
KRZYSZTOF,MALE,641406
TOMASZ,MALE,536774
ANDRZEJ,MALE,533141
PAWEŁ,MALE,506006
MICHAŁ,MALE,492093
JAN,MALE,477845
MARCIN,MALE,449607
JAKUB,MALE,426709
ADAM,MALE,401674
ŁUKASZ,MALE,383582
MAREK,MALE,378001
...

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 26/28

 csv.DictReader() creates a CSV reader that automatically interprets
the first row as column headers

 The fieldnames parameter contains the column headers as a list
 each row of data is represented as a dictionary, where the keys

are the column headers and the values are the corresponding data

Python Python -- CSV format (example no. 2)CSV format (example no. 2)

import csv

Open the CSV file for reading
with open('name.csv', newline='', encoding="utf-8") as file:

Create a CSV reader
reader = csv.DictReader(plik)

Display column headers
print("Column headers:", reader.fieldnames)

Iterate through each row of data
for row in reader:

Display the data in each row
print(row)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 27/28

Python Python -- CSV format (example no. 2)CSV format (example no. 2)
 result of running the program

Column headers: ['FIRST_NAME', 'GENDER', 'NUMBER_OF_OCCURRENCES']
{'FIRST_NAME': 'PIOTR', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '689313'}
{'FIRST_NAME': 'KRZYSZTOF', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '641406'}
{'FIRST_NAME': 'TOMASZ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '536774'}
{'FIRST_NAME': 'ANDRZEJ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '533141'}
{'FIRST_NAME': 'PAWEŁ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '506006'}
{'FIRST_NAME': 'MICHAŁ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '492093'}
{'FIRST_NAME': 'JAN', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '477845'}
{'FIRST_NAME': 'MARCIN', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '449607'}
{'FIRST_NAME': 'JAKUB', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '426709'}
{'FIRST_NAME': 'ADAM', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '401674'}
{'FIRST_NAME': 'ŁUKASZ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '383582'}
{'FIRST_NAME': 'MAREK', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '378001'}
{'FIRST_NAME': 'MATEUSZ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '377011'}
{'FIRST_NAME': 'GRZEGORZ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '374820'}
{'FIRST_NAME': 'STANISŁAW', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '366180'}
{'FIRST_NAME': 'WOJCIECH', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '335311'}
{'FIRST_NAME': 'MARIUSZ', 'GENDER': 'MALE', 'NUMBER_OF_OCCURRENCES': '286869‘}

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 8 28/28

End of lecture no. End of lecture no. 88

Thank you for your attention!Thank you for your attention!

