Python Programming 1

(CP1S02005E)

Biatystok University of Technology

Faculty of Electrical Engineering

Industry Digitization, semester II
Academic year 2024/2025

Lecture no. 08 (23.04.2025)

Jarostaw Forenc, PhD

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 8

Topics

Files in Python

O

O
O
O
O

opening a file - open() function
closing a file - close() method
reading from a text file

writing to a text file

CSV format

Jarostaw Forenc, PhD
2/28

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 3/28

Python - files (opening a file)

o to open a file, use the built-in open() function

open(file, mode='r', buffering=-1, encoding=None)

o file - the name of the file along with its path
o mode - the file opening mode:
m 't - opens the file for reading (default)

= 'W' - opens the file for writing; if the file already exists, its content
will be erased; if it doesn't exist, a new file will be created

m '3’ - opens the file for appending; new content will be added
at the end of the existing content

= 'r+' - opens the file for both reading and writing

= 'b'- binary mode, used to open the file in binary mode
(e.g. 'rb', 'wb', 'ab")

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 4/28

Python - files (opening a file)

o to open a file, use the built-in open() function

open(file, mode='r', buffering=-1, encoding=None)

o buffering - determines whether data is buffered; the default is -1,
which means the default buffering settings are used; you can provide 0
to disable buffering or a value greater than 0 to specify the buffer size

0 encoding - the encoding used for a text file; the default is None,
which means the default encoding of the environment is used,
e.g. 'utf-8', 'utf-16', 'utf-32', 'ascii’

o the open() function returns a file object, which is used to perform file
operations; this object is usually assigned to a variable

file = open("file_name.txt", "w")

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 5/28

Python - files (opening a file, examples)

O opening the file data.txt for reading (default text mode)

file = open("data.txt", "r")

o opening the file date.txt located on disk D in the results directory for
appending (default text mode)

file = open("d:/results/data.txt", "a")

O opening the file data.txt for reading and writing (default text mode)

file = open("data.txt", "r+")

o opening the file data.dat for reading and writing in binary mode

file = open("results/data.dat", "rb+")

Python Programming 1 (CP1S02005E)

Academic year 2024/2025, Lecture no. 8

Jarostaw Forenc, PhD

6/28

Python - files (opening a file)

O

trying to open a non-existent file for reading

file = open("data.txt", "r")
file operations
file.close()

will result in an error and raise a FileNotFoundError exception

Traceback (most recent call last):
File "d:\myapp.py", line 1, in <module>
file = open("data.txt", "r"
AAAAAAAANAAANAAAAANAAANAAANAANAAN
FileNotFoundError: [Errno 2] No such file or
directory: 'data.txt'

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 7/28

Python - files (opening a file)

0 to prevent opening a non-existent file, you can use exception handling
(try-except section)

try:
file = open("data.txt"™, "r")
file operations
file.close()

except FileNotFoundError:
print("File does not exist.")

File does not exist.

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 8/28

Python - files (closing a file)

o to close the file, the close() method is used, which is called on the file
object after the operation on it is completed

file = open("data.txt", "w")
file operations
file.close()

o closing a file is important because it frees up system resources
used by the file and ensures that all buffered data is written to disk

o after calling the close() method, further operations on the file using
the same object will not be possible and will raise an exception:
ValueError: I/O operation on closed file

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 9/28

Python - files (opening and closing a file)

o instead of the traditional method of opening and closing a file:

file = open("data.txt", "w")
file operations
file.close()

o it is recommended to use the with statement, which ensures the file
is automatically closed after the with block is exited

with open("data.txt", "r") as file:
file operations

o this helps avoid issues related to unclosed files and results in cleaner,
more readable code

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 10/28

Python - files (reading from text file)

O

the read() method reads the entire contents of a file as a single string

with open("file_name.txt", "r") as file:
content = file.read()
print(content)

the readline() method reads the next line of text from the file

with open("file_name.txt", "r") as file:
line = file.readline()
while line:
print(line)
line = file.readline()

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 11/28

Python - files (reading from text file)

o the readlines() method reads all lines from the file and returns them
as a list of strings

with open("file_name.txt", "r") as file:
lines = file.readlines()
for line in lines:
print(lines)

O you can also use a for loop to iterate over a file; each line in the file
will be treated as the next iterable element

with open("file_name.txt", "r") as file:
for line in file:
print(file, end="")

o setting end="" in the print() function means that it will not automatically
add a newline character after each line read from the file, which helps
avoid double spacing between lines

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 8

Jarostaw Forenc, PhD
12/28

Python - files (reading from text file, example)

o contents of the file data.txt

Jarostaw Kaminski
Grazyna Wéjcik
Piotr Wisniewski

o displaying the contents of the file with line numbering

line_number = 1

line = file.readline()

while line:
print(f"{line_number}: {line}", end="")
line = file.readline()
line_number += 1

with open("data.txt", "r", encoding = "utf-8") as file:

1: Jarostaw Kaminski
2: Grazyna Woéjcik
3: Piotr Wisniewski

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 8

Jarostaw Forenc, PhD

13/28

Python - files (reading from text file, example)

o if character encoding is not specified, the text may be displayed incorrectly

with open("data.txt", "r") as file:
line_number = 1
line = file.readline()
while line:
print(f"{line_number}: {line}", end="")
line = file.readline()
line_number += 1

1: Jarosl, aw Kamil., ski
2: GralLLyna WAtjcik
3: Piotr Wili>niewski

o this is due to differences between the character encoding used when

the file was created and the one used for displaying it

import os
os.system("chcp")

Active code page:

852

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 8

Jarostaw Forenc

. PhD
14/28

Python - files (reading from text file,

o the text file contains integers

example)

o calculating and displaying the sum and arithmetic mean of the numbers

with open("numbers.txt", "r") as file:
sum = 0O
number_of elements = ©
line = file.readline()
while line:
number = int(line)
sum += number
number_of elements += 1
line = file.readline()
average = sum / number_of_elements
print("Sum of numbers from file:", sum)

23
18
-11
53
6

print("Arithmetic mean of numbers from file:", average)

Sum of numbers from file: 89

Arithmetic mean of numbers from file: 17.

8

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 8

Jarostaw Forenc, PhD
15/28

Python - files (reading from text file, example)

O sum and average of numbers from a text file with error handling

try:
with open("numbers.txt", "r") as file:
sum = 0
number_of_elements = 0
line = file.readline()
while line:
number = int(line)
sum += number
number_of_elements += 1
line = file.readline()
average = sum / number_of_elements
print("Sum of numbers from file:", sum)

except FileNotFoundError:

print("File 'numbers.txt' not found.")
except ValueError:

print("Error converting data to integer.")
except IOError:

print("Arithmetic mean of numbers from file:", average)

print("An error occurred while reading the file.")

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 16/28

Python - files (saving to text file)

o the write() method is used to write single lines or fragments of text
to an open text file

with open("output.txt", "w") as file:
file.write("This is the first line.\n")
file.write("This is the second line.\n")

o the writelines() method is used to write multiple lines of text at once;
it takes a list of strings as an argument

lines = ["The first line.\n", "The second line.\n"]
with open("output.txt", "w") as file:
file.writelines(lines)

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 17/28

Python - files (saving to text file)

o the print() function has an optional file parameter that allows you to write
text to a specified file instead of to the standard output (e.g., the screen)

with open("output.txt", "w") as file:
print("The first line.", file=file)
print("The second line.", file=file)

o the data written to the file can be formatted

with open("output.txt", "w") as file:
name = "John"
age = 30
file.write(f"Name: {name}, Age: {age}\n")

Name: John, Age: 30

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 18/28
e

Python - files (saving to text file, example)

o saving 10 pseudo-random real numbers in a text file; each number should
be in the range from 0 to 99, rounded to 3 decimal places

import random

num = [round(random.uniform(@, 99), 3) for _ in range(10)]

with open("numbers.txt", "w") as file:

for number in num:

file.write(f"{number:.3f}\n") 56.766

o . 7.212
print("The numbers have been saved.") 10.048
43.205
o the random.uniform(a, b) function from the random module 22-(9)453
generates pseudo-random real numbers in the interval [a, b] 50 860
o the round(number, ndigits) function rounds a number 42.654
to the specified number of decimal places, where number 85.622

is the value to round, and ndigits is the number of digits 6.440

after the decimal point

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 19/28

Python - CSV format

o CSV (Comma-Separated Values) - a simple format for storing tabular data,
where each row represents a single record and the values are separated
by a delimiter (most commonly a comma)

o the delimiter can also be a semicolon, space, tab, etc.
o example of a CSV file (oscilloscope data):

X,CH1,

Second,Volt,
-3.00000e-04,-3.20e-01,
-2.99000e-04,-6.40e-01,
-2.98000e-04,-7.20e-01,
-2.97000e-04,-1.04e+00,

0 each data row is separated from the next by a newline character

o the first row in a CSV file often contains column headers that describe
the content of each column

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 8

Jarostaw Forenc, PhD
20/28

Python - CSV format (example no. 1)

o loading a CSV file with oscilloscope data and creating a plot using NumPy
and Matplotlib libraries

o the libraries need to be installed - in the Terminal window, enter:
pip install matplotlib numpy

import matplotlib.pyplot as plt
import numpy as np
import csv

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 21/28

Python - CSV format (example no. 1)

Loading data from a CSV file
x_data = []
y _data = []

with open('d:/results.csv’', 'r') as file:
reader = csv.reader(file)
next(reader) # Skip the header row
next(reader) # Skip the header row
for row in reader:
Store data in appropriate lists
x_data.append(float(row[0]))
y_data.append(float(row[1]))

Convert lists to numpy arrays for easier processing
x_data = np.array(x_data)
y _data = np.array(y_data)

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 8

Jarostaw Forenc, PhD
22/28

Python - CSV format (example no. 1)

Plotting the graph
plt.plot(x_data, y _data, label='U")

Setting axis labels
plt.xlabel('t, s')
plt.ylabel('U, V')

Chart title
plt.title('Triangular signal')

Adding a legend
plt.legend()

Enabling the grid
plt.grid(True)

Displaying the plot
plt.show()

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 23/28

Python - CSV format (example no. 1)

3;\ Figure 1 e O X

Triangular signal

-0.00010 —0.00005 0.00000 0.00005 0.00010
t,s

$ Q=

Python Programming 1 (CP1S02005E)

Academic year 2024/2025, Lecture no. 8

Jarostaw Forenc, PhD

24/28

Python - CSV format (example no. 1)

Triangular signal

T T T T T
—0.00010 —0.00005 0.00000 0.00005 0.00010
t. s

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 25/28

Python - CSV format (example no. 2)

o list of male names in the PESEL register as of 19/01/2024 - first name

(https://dane.qgov.pl/pl/dataset/ 1667, lista-imion-wystepujacych-w-rejestrze-
pesel-osoby-zyjace)

FIRST NAME,GENDER,NUMBER OF OCCURRENCES
PIOTR,MALE, 689313
KRZYSZTOF ,MALE, 641406
TOMASZ ,MALE, 536774
ANDRZEJ,MALE, 533141
PAWEE,MALE, 506006
MICHAL MALE, 492093
JAN ,MALE, 477845
MARCIN,MALE, 449607
JAKUB,MALE, 426709
ADAM,MALE, 401674

L UKASZ ,MALE,b 383582
MAREK ,MALE , 378001

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 26/28

Python - CSV format (example no. 2)

import csv

Open the CSV file for reading
with open('name.csv', newline='"', encoding="utf-8") as file:

Create a CSV reader
reader = csv.DictReader(plik)

Display column headers
print("Column headers:", reader.fieldnames)

Iterate through each row of data
for row in reader:
Display the data in each row
print(row)

o csv.DictReader() creates a CSV reader that automatically interprets
the first row as column headers

o The fieldnames parameter contains the column headers as a list

o each row of data is represented as a dictionary, where the keys
are the column headers and the values are the corresponding data

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD

Academic year 2024/2025, Lecture no. 8 27/28
I

Python - CSV format (example no. 2)

o result of running the program

Column headers: ['FIRST_NAME', 'GENDER', 'NUMBER_QF_QCCURRENCES']

{'FIRST NAME': 'PIOTR', 'GENDER': 'MALE', 'NUMBER OF OCCURRENCES': '689313'}
{'FIRST_NAME': '"KRZYSZTOF', 'GENDER': 'MALE', 'NUMBER_QF_QCCURRENCES': '641406'}
{'FIRST_NAME': '"TOMASZ', 'GENDER': 'MALE', 'NUMBER_QF_QCCURRENCES': '536774"'}
{'FIRST_NAME': '"ANDRZEJ', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '533141"'}
{'FIRST_NAME': 'PAWELZ', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '506006'}
{'FIRST_NAME': 'MICHALZ', 'GENDER': 'MALE', 'NUMBER_QF_QCCURRENCES': '492093'}
{'FIRST_NAME': 'JAN', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '477845"'}
{'FIRST_NAME': '"MARCIN', 'GENDER': 'MALE', 'NUMBER_QF_QCCURRENCES': 1449607 '}
{'FIRST_NAME': '"'JAKUB', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '426709'}
{'FIRST_NAME': '"ADAM', 'GENDER': 'MALE', 'NUMBER_QF_QCCURRENCES': '401674"'}
{'FIRST_NAME': 'LUKASZ', 'GENDER': 'MALE', 'NUMBER_QF_QCCURRENCES': '383582'}
{'FIRST_NAME': '"MAREK', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '378001"'}
{'FIRST_NAME': '"MATEUSZ', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '377011"'}
{'FIRST_NAME': '"GRZEGORZ', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '374820'}
{'FIRST_NAME': 'STANISEAW', 'GENDER': 'MALE', 'NUMBER_QF_QCCURRENCES': '366180'}
{'FIRST_NAME': '"'WOJCIECH', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': '335311"'}
{'FIRST_NAME': '"MARIUSZ', 'GENDER': 'MALE', 'NUMBER_OF_QCCURRENCES': 1286869}

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 8 28/28

End of lecture no. 8

Thank you for your attention!

