
Python Programming 1Python Programming 1

BiałystokBiałystok University of TechnologyUniversity of Technology
Faculty of Electrical EngineeringFaculty of Electrical Engineering

Industry Digitization, semester IIndustry Digitization, semester III
Academic year 2024/2025Academic year 2024/2025

Lecture no. 0Lecture no. 099 ((3030.0.044.2025).2025)

Jarosław Forenc, PhD

(CP1S02005E)(CP1S02005E)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 2/29

TopicsTopics
 Files in Python

 format JSON
 pathlib module

 Exceptions
 try-except
 try-except-finally
 try-except-else

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 3/29

Python Python -- JSON formatJSON format
 JSON (JavaScript Object Notation) is a format for storing and exchanging

computer data, originally developed for the JavaScript language (files with
the .json extension)

 it stores data in key-value pairs

 example of a JSON file:

 JSON is language-independent - most programming languages have
built-in support for this format (e.g., Python, Java, C++, JavaScript)

 it is very popular in communication between applications

{
"name": "John",
"age": 21,
"hobby": ["sport", "dance", "travel"]

}

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 4/29

Python Python -- JSON formatJSON format
 data types used by JSON:

 integer and floating-point numbers (float, compliant with double-
precision floating-point format)

 string - as a key, diacritical characters should be avoided

{
"age" : 25,
"height" : 1.85

}

{
"name" : "Paul",
"surname" : "Walker"

}

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 5/29

Python Python -- JSON formatJSON format
 data types used by JSON:

 boolean values - true, false

 null - a special value indicating the absence of data

 array

{
"ready" : true,
"finished" : false

}

{
"data" : null

}

{
"cities" : ["Paris", "Berlin", "Tokio"]

}

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 6/29

Python Python -- JSON formatJSON format
 data types used by JSON:

 object - sets of key-value pairs enclosed in curly braces

 advantages of the JSON format include high data readability

 other popular formats: CSV, XML, YAML

{
"car" :
{

"brand" : "Opel",
"model" : "Kadet",
"year" : 1998,
"registered" : true

}
}

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 7/29

Python Python -- JSON formatJSON format
 in Python, the json module is used to handle JSON data
 json.dumps() is used to encode data to JSON format

import json
data = {"name": "John", "age": 30, "city": "Berlin"}
json_string = json.dumps(data)
print(json_string)

{"name": "John", "age": 30, "city": "Berlin"}

import json
numbers = [2, 3, 5, 7, 11, 13]
json_string = json.dumps(numbers)
print(json_string)

[2, 3, 5, 7, 11, 13]

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 8/29

Python Python -- JSON formatJSON format
 json.loads() is used to decode JSON data into Python objects

import json
json_string = '{"name": "John", "age": 30, "city": "Berlin"}'
data = json.loads(json_string)
print(data)

{'name': 'John', 'age': 30, 'city': 'Berlin'}

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 9/29

Python Python -- JSON formatJSON format
 these functions (json.dumps() and json.loads()) also enable direct

reading from and writing to files

import json

data = [1, 2, 3, 4, 5]

Writing data to a JSON file
with open("data.json", "w") as json_file:

json.dump(data, json_file)
Reading data from a JSON file
with open("data.json", "r") as json_file:

loaded_data = json.load(json_file)

print(loaded_data)

[1, 2, 3, 4, 5]

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 10/29

Python Python -- pathlib modulepathlib module
 the pathlib module is used for handling file and directory paths

(independent of the operating system)

 paths are represented as Path objects, which can be manipulated
using various methods

 these methods allow reading data from a file and writing data to a file

 reading and displaying the contents of a text file on the screen:

 we create a Path object and assign it to a variable named file

 the read_text() method reads the entire content of the file and stores it
in a single, long text string called data, and then automatically closes
the file

from pathlib import Path
file = Path("data.txt")
data = file.read_text()
print(data)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 11/29

Python Python -- pathlib modulepathlib module
 when the end of the file is reached, the read_text() method returns

an empty string, which is displayed as a blank line

 the blank line can be removed using the rstrip() method:

 you can also use so-called method chaining:

from pathlib import Path
file = Path("data.txt")
data = file.read_text()
data = data.rstrip()
print(data)

from pathlib import Path
file = Path("data.txt")
data = file.read_text().rstrip()
print(data)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 12/29

Python Python -- pathlib modulepathlib module
 as the file path, you can provide:

 a relative path - the file's location is specified relative to the directory
in which the program is being executed

 an absolute path - contains the full path to the file, starting from
the drive name (Windows) or the root of the file system (Linux)

 when specifying file paths, forward slashes (/) are used to separate
individual elements (e.g., directories)

file = Path("folder/subfolder/file.txt")

file1 = Path("C:/folder/subfolder/file.txt")
file2 = Path("/home/user/folder/file.txt")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 13/29

Python Python -- pathlib modulepathlib module
 the text read using read_text() can be split into lines and then processed

using a for loop

 the splitlines() method splits a string into lines, using the newline
character (\n) by default

 the splitting into lines can be done directly within a for loop

from pathlib import Path
file = Path("data.txt")
data = file.read_text()
rows = data.splitlines()
for row in rows:

print(row)

...
data = file.read_text()
for row in data.splitlines():

print(row)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 14/29

PythonPython -- pathlibpathlib modulemodule
 if we want to work with the file data as numbers, we need to convert

them from text to integers (using the int() function) or floating-point
numbers (using the float() function)

 example: sum of floating-point numbers stored in a file

 Python does not impose a limit on the amount of data it can work with -
the limitation is determined by the system's memory

from pathlib import Path
file = Path("numbers.txt")
rows = file.read_text().splitlines()
sum = 0
for row in rows:

sum = sum + float(row)
print(f"Sum of numbers in file: {sum}")

12.34
15.67
21.36
45.12

Sum of numbers in file: 94.49

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 15/29

Python Python -- pathlib modulepathlib module
 the write_text() method allows writing a single line of text to a file

 if a file with the given name does not exist, it will be created

 if a file with the given name already exists, its previous content
will be deleted

 the write_text() method ensures the file is properly closed after
the write operation is completed

from pathlib import Path
file = Path("output.txt")
file.write_text("Hello world!\n")

Hello world!

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 16/29

Python Python -- pathlib modulepathlib module
 if the text consists of multiple lines, it should be prepared in advance,

and the write_text() method should be called only once

from pathlib import Path
text = "---------------------------\n"
text += "| Name | Code | Rate |\n"
text += "---------------------------\n"
text += "| euro | 1 EUR | 4.2789 |\n"
text += "| dollar | 1 USD | 3.7599 |\n"
text += "---------------------------\n"
file = Path("table.txt")
file.write_text(text)

| Nama | Code | Rate |

| euro | 1 EUR | 4.2789 |
| dollar | 1 USD | 3.7599 |

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 17/29

Python Python -- pathlib module (methods)pathlib module (methods)

Method Description

cwd() returns a Path object representing the current directory

home() returns a Path object representing the user's home directory

exists() returns True if the given file or directory path physically exists
on the disk

is_dir() returns True if the given path represents a directory

is_file() returns True if the given path represents a file

iterdir()
iterates through all elements (files, directories, etc.)
in a given directory, returning a generator containing
Path objects representing those elements

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 18/29

Python Python -- pathlib module (methods)pathlib module (methods)

Method Description

mkdir() creates a new directory on the disk

read_bytes() reads the contents of a file as binary data

rename() renames a file or directory

replace()
replaces a file or directory on the disk; similar to the
rename() method, but if the target path already exists,
it will be replaced by the current file or directory

rmdir() removes an empty directory from the file system

write_bytes() writes data to a file as binary data

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 19/29

Python Python -- pathlib modulepathlib module
 checking if a file exists, displaying file contents, displaying the current

and home directory

from pathlib import Path
file = Path("data.txt")
if file.exists():

if file.is_file():
print(f"{file} exists, content: ")
data = file.read_text()
print(data)

else:
print(f"{file} – not a file")

else:
print(f"No file: {file}")

print(f"Current directory: {Path.cwd()}")
print(f"Home directory: {Path.home()}")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 20/29

Python Python -- exceptionsexceptions
 exceptions are special objects used by Python to manage errors that may

occur during program execution.

 if an exception is raised and not handled, the program is interrupted
and a traceback is displayed showing the exception that occurred

x = float(input("Enter x: "))
y = float(input("Enter y: "))
z = x / y
print(f"The result is: {z}")

Enter x: 3
Enter y: 0
Traceback (most recent call last):
File "d:\MyApp.py", line 3, in <module>

z = x / y
~~^~~

ZeroDivisionError: float division by zero

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 21/29

Python Python -- exceptions (tryexceptions (try--except)except)
 to catch and handle exceptions, a try-except block is used

 after try: we place code that may raise an exception

 after except: we place code that should run if an exception occurs

 you can handle a specific type of error, e.g.
 except ZeroDivisionError:
 except ValueError:

 you can also use a general exception if you're not sure what type might
occur:
 except Exception:

try:
code that may raise an exception

except ExceptionType:
exception handling

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 22/29

Python Python -- exceptions (tryexceptions (try--exceptexcept--finally)finally)

 the try-except-finally statement is used when you want to ensure that
certain instructions are executed regardless of whether an exception
occurs or not

 the finally block is optional, but if it is present, it will always be executed,
regardless of whether an exception occurred

 the finally block is used to clean up resources, such as files or network
connections, that should always be released regardless of exceptions

try:
code that may raise an exception

except ExceptionType:
exception handling

finally:
code that will always be executed

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 23/29

Python Python -- exceptions (tryexceptions (try--exceptexcept--else)else)

 the try-except-else statement is used when we want to execute certain
instructions only if no exception occurred in the try block

 the else block is optional and will be executed only if no exception was
raised in the try block

 the else block is useful when we want to perform some operations
- for example, calculations on data that are expected to work correctly

try:
code that may raise an exception

except ExceptionType:
exception handling

else:
code that will be executed only
if no exception occurred

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 24/29

Python Python -- exceptions exceptions
 protecting the program against division by zero

x = float(input("Enter x: "))
y = float(input("Enter y: "))
try:

z = x / y
except ZeroDivisionError:

print("Division by zero error!")
else:

print(f"The result is: {z}")

Enter x: 3
Enter y: 7
The result is: 0.42857142857142855

Enter x: 3
Enter y: 0
Division by zero error!

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 25/29

Python Python -- exceptions exceptions
 protecting the program against division by zero and invalid user input

x = float(input("Enter x: "))
y = float(input("Enter y: "))
try:

z = x / y
except ZeroDivisionError:

print("Division by zero error!")
except ValueError:

print("Invalid number format!")
else:

print(f"The result is: {z}")

Enter x: 3
Enter y: 7,0
Invalid number format!

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 26/29

Python Python -- exceptions exceptions
 letter statistics in a text file

 the get() method returns the value for the given key (a character)
or a default value (0), if the key does not exist in the dictionary

try:
with open("text.txt", "r", encoding="utf-8") as file:

data = file.read()
except FileNotFoundError:

print("Missing file text.txt")
else:

statistics = {}
for chr in data:

if chr.isalpha():
statistics[chr] = statistics.get(chr, 0) + 1

print("Letter statistics:")
for letter, number in sorted(statistics.items()):

print(f"{letter}: {number}")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 27/29

Python Python -- exceptions exceptions
 letter statistics in a text file

Litwo! Ojczyzno moja! ty jesteś jak zdrowie:
Ile cię trzeba cenić, ten tylko się dowie,
Kto cię stracił. Dziś piękność twą w całej ozdobie
Widzę i opisuję, bo tęsknię po tobie.

D: 1
I: 1
K: 1
L: 1
O: 1
W: 1
a: 5
b: 4
c: 6
d: 4

e: 11
i: 16
j: 6
k: 4
l: 2
m: 1
n: 5
o: 14
p: 3
r: 3

s: 5
t: 11
u: 1
w: 5
y: 3
z: 7
ą: 1
ć: 2
ę: 8
ł: 2
ś: 3

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 28/29

Python Python -- exceptions exceptions
 if we don’t want to take any action after an exception occurs, but still

want to handle it, we can use the pass statement in the except block

 the pass statement is usually used when we are not yet writing any code,
but plan to add it in the future

x = float(input("Enter x: "))
y = float(input("Enter y: "))
try:

z = x / y
except ZeroDivisionError:

print("Division by zero error!")
except ValueError:

pass
else:

print(f"The result is: {z}")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 9 29/29

End of lecture no. End of lecture no. 99

Thank you for your attention!Thank you for your attention!

