
Python Programming 1Python Programming 1

BiałystokBiałystok University of TechnologyUniversity of Technology
Faculty of Electrical EngineeringFaculty of Electrical Engineering

Industry Digitization, semester IIndustry Digitization, semester III
Academic year 2024/2025Academic year 2024/2025

Lecture no. Lecture no. 1010 ((2121.0.055.2025).2025)

Jarosław Forenc, PhD

(CP1S02005E)(CP1S02005E)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 2/33

TopicsTopics
 Object-Oriented Programming

 definitions, class structure
 constructor, attributes and methods
 inheritance
 multiple inheritance
 access rights

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 3/33

Python Python -- object oriented programmingobject oriented programming
 object-oriented programming is a programming paradigm in which

programs are constructed by defining and manipulating objects
 in Python, object-oriented programming is based on three main elements:

classes, objects, and inheritance
 a class is a template or blueprint that defines the properties and behaviors

of objects (in a sense, it creates a new type)
 an object is an instance of a class (a variable of the created type)
 attributes are the properties of objects that store data; in Python, new

attributes can be added to an object at any time
 methods are functions defined inside a class that operate on objects

of that class; these methods have access to the object's attributes
and can manipulate them

 inheritance allows the creation of new (derived) classes based on existing
(base or parent) classes; the derived class inherits the attributes and
methods of the base class

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 4/33

Python Python -- object oriented programming (classes)object oriented programming (classes)
 general structure of a class definition in Python

class ClassName:
Class attributes
variable = "value"

Constructor
def __init__(self, parameters):

self.parameters = parameters

Class methods
def method(self):

method code
return something

 a class consists of a class
header and a class body

 the header begins with the
keyword class, followed by
the class name

 by convention, the class
name starts with a capital
letter

 the class body contains the
attributes and methods that
define the behavior and
properties of objects created
from that class

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 5/33

Python Python -- object oriented programming (classes)object oriented programming (classes)
 class definition of Person, object declaration smith

class Person:

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

def print(self):
print(f"{self.fname} {self.lname}, {self.age}

years old")

smith = Person("John","Smith",25)
smith.print()

John Smith, 25 years old

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 6/33

Python Python -- object oriented programming (constructor)object oriented programming (constructor)

 __init__ - the constructor, a special method called when a new instance
(object) of the class is created

 double underscores at the beginning and end are a naming convention
used to avoid conflicts with other methods that might be defined later
with the same names

 the first parameter of the constructor should be named self - this is
a reference to the instance of the class itself

 thanks to self, object instances gain access to the attributes and methods
defined in the class

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

smith = Person("Johnn","Smith",25)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 7/33

Python Python -- object oriented programming (constructor)object oriented programming (constructor)

 __init__ - the constructor, a special method called when a new instance
(object) of the class is created

 the constructor receives the arguments fname, lname and age, while
the self argument is passed automatically

 variables preceded by self are attributes, and they are accessible
to every method within the class

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

smith = Person("Johnn","Smith",25)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 8/33

Python Python -- object oriented programming (constructor)object oriented programming (constructor)

 __init__ - the constructor, a special method called when a new instance
(object) of the class is created

 self.fname = fname takes the value stored in the fname parameter,
assigns it to the fname attribute, and this attribute is then attached
to the instance being created

 there is no return statement in the constructor, but Python automatically
returns the instance of the Person class

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

smith = Person("Johnn","Smith",25)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 9/33

Python Python -- object oriented programming (methods)object oriented programming (methods)

 the print() method does not require any additional data, so it has only
one parameter - self

 calling the method:

 calling the print() method on the object instance smith:

def print(self):
print(f"{self.fname} {self.lname}, {self.age} years old")

instance_name.method_name(arguments)

smith = Person("John","Smith",25)
smith.print()

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 10/33

Python Python -- object oriented programming (__str__)object oriented programming (__str__)
 instead of the print() method, you can use the built-in __str__ method,

which is called automatically when the object is converted to a string using
the str() function or when the object is used in a context where a string is
expected, such as in the print() function

class Person:

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

def __str__(self):
return f"{self.fname} {self.lname}, {self.age}

years old"

smith = Person("John","Smith",25)
print(smith)

John Smith, 25 years old

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 11/33

Python Python -- object oriented programming (example)object oriented programming (example)
 a class describing a triangle

class Triangle:
def __init__(self, a, h):

self.a = a # base
self.h = h # height

def area(self):
return (self.a * self.h) / 2

def __str__(self):
return f"[a = {self.a}, h = {self.h}]"

tr1 = Triangle(6, 8)
print(tr1)
print(f"Area of triangle: {tr1.area():.2f}")

[a = 6, h = 8]
Area of triangle: 24.00

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 12/33

Python Python -- object oriented programming (example)object oriented programming (example)
 access to class attributes

 method invocation

instance_name.attribute_name

instance_name.method_name()

tr1 = Triangle(6, 8)
tr1.a = 5
tr1.h = 9

tr1 = Triangle(6, 8)
p = tr1.area()
print(f"Area of triangle: {tr1.area():.2f}")

tr1.a
tr1.h

tr1.area()
tr1.area()

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 13/33

Python Python -- object oriented programmingobject oriented programming
 it is possible to create multiple instances (objects) based on a single class

class Person:

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

def __str__(self):
return f"{self.fname} {self.lname}, {self.age}

years old"

smith = Person("John","Smith",25)
print(smith)

brown = Person("Kate","Brown",18)
print(brown) John Smith, 25 years old

Kate Brown, 18 years old

smith = Person("John","Smith",25)
print(smith)

brown = Person("Kate","Brown",18)
print(brown)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 14/33

Python Python -- object oriented programmingobject oriented programming
 not all attributes need to have values passed during initialization -

there can be attributes with default values

class Person:
children = 0

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

def __str__(self):
return f"{self.fname} {self.lname}, {self.age}

years old, children: {self.children}"

smith = Person("John","Smith",25)
print(smith)

John Smith, 25 years old, children: 0

children = 0

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 15/33

Python Python -- object oriented programmingobject oriented programming
 not all attributes need to have values passed during initialization -

there can be attributes with default values

class Person:

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age
self.children = 0

def __str__(self):
return f"{self.fname} {self.lname}, {self.age}

years old, children: {self.children}"

smith = Person("John","Smith",25)
print(smith)

John Smith, 25 years old, children: 0

self.children = 0

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 16/33

Python Python -- object oriented programmingobject oriented programming
 an attribute's value can be changed directly in an instance (object)

 an attribute's value can be changed using a method

John Smith, 25 years old, children: 2

smith = Person("John","Smith",25)
smith.children = 2
print(smith)
smith.children = 2

class Person:
...
def save_children(self, number_of_children):

self.children = number_of_children

smith = Person("John","Smith",25)
smith.save_children(3)
print(smith)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 17/33

Python Python -- object oriented programmingobject oriented programming
 an attribute's value can be changed directly in an instance (object)

 an attribute's value can be changed using a method

class Person:
...
def add_child(self):

self.children += 1

smith = Person("John","Smith",25)
smith.add_child()
print(smith)

John Smith, 25 years old, children: 2

smith = Person("John","Smith",25)
smith.children = 2
print(smith)
smith.children = 2

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 18/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)
 inheritance is a technique that allows the creation of new classes based

on existing ones

 a class from which other classes inherit is called a base class (also known
as a parent class or superclass)

 the new class is called a derived class (also known
as a child class or subclass)

 the new class automatically inherits the attributes
and methods of the base class

 a derived class can also define new attributes
and methods

first name
Person

last name
age

semester
Student

faculty

base class

derived class

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 19/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 20/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)

class Person:
def __init__(self, fname, lname):

self.fname = fname
self.lname = lname

def __str__(self):
return f"Person: {self.fname} {self.lname}"

class Student(Person):
def __init__(self, fname, lname, semester, faculty):

super().__init__(fname, lname)
self.semester = semester
self.faculty = faculty

def __str__(self):
return (f"Student: {self.fname} {self.lname}, "

f"semester: {self.semester}, faculty: "
f"{self.faculty}")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 21/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)
 the base class must be located in the same file where the derived class

is created

 the name of the base class must be included in the header of derived class

 in the __init__() method of the derived class, we call the __init__()
method from the base class

 super() is a built-in function that returns a special object (called
a delegate), which allows access to methods and attributes of the base
class from within the derived class

 super() is used to call the constructor or methods of the base class;
the function name comes from the term "superclass"

class Student(Person):

super().__init__(fname, lname)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 22/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)
 creating objects and calling methods

person = Person("John", "Smith")
student = Student("Kate", "Brown", 3, "EE")

print(person)
print(student)

print(f"First name: {student.fname}")
print(f"Last name: {student.lname}")
print(f"Semester: {student.semester}")
print(f"Faculty: {student.faculty}")

Person: John Smith
Student: Kate Brown, semester: 3, faculty: EE
Fisrt name: Kate
Last name: Brown
Semester: 3
Faculty: EE

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 23/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)
 any method from the base class can be overridden

class Vehicle:
def __init__(self, brand, model):

self.brand = brand
self.model = model

def desc(self):
return f"Vehicle brand {self.brand}, model {self.model}"

class Car(Vehicle):
def __init__(self, brand, model, year):

super().__init__(brand, model)
self.year = year

def desc(self):
basic_desc = super().desc()
return f"{basic_desc}, year of production: {self.year}"

def desc(self):
return f"Vehicle brand {self.brand}, model {self.model}"

def desc(self):
basic_desc = super().desc()
return f"{basic_desc}, year of production: {self.year}"

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 24/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)
 a method from the derived class overrides the visibility of a method from

the base class

 using the super() function, one can refer to a method from the base class

vehicle = Vehicle("Toyota", "Corolla")
car = Car("BMW", "X5", 2022)

print(vehicle.desc())
print(car.desc())

Vehicle brand Toyota, model Corolla
Vehicle brand BMW, model X5, year of production: 2022

def desc(self):
basic_desc = super().desc()
return f"{basic_desc}, rok produkcji: {self.rok}"

super().desc()

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 25/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)
 single inheritance - a derived class inherits from one base class

 multiple inheritance - a derived class inherits from more than one base class

base class

Person

Student

derived class

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 26/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)

class A:
def __init__(self):

self.feature_a = "Feature from class A"

def method_a(self):
return "Method from class A"

class B:
def __init__(self):

self.feature_b = "Feature from class B"

def method_b(self):
return "Method from class B"

class C(A, B):
def __init__(self):

A.__init__(self)
B.__init__(self)
self.feature_c = "Feature from class C"

def method_c(self):
return "Method from class C"

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 27/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)

instance = C()
print(instance.feature_a)
print(instance.feature_b)
print(instance.feature_c)

print(instance.method_a())
print(instance.method_b())
print(instance.method_c())

Feature from class A
Feature from class B
Feature from class C
Method from class A
Method from class B
Method from class C

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 28/33

Python Python -- object oriented prog. (access rights)object oriented prog. (access rights)
 Python does not have formal access modifiers like in C++ (e.g., public,

protected, private)

 instead, naming conventions and certain mechanisms are used to indicate
levels of access to class attributes and methods.

 by default, all attributes and methods are public - this means they are
accessible from outside the class; there are no special name prefixes

class MyClass:
def __init__(self):

self.public_attribute = "Public access"

def public_method(self):
return "This is a public method"

instance = MyClass()
print(instance.public_attribute) # Public access
print(instance.public_method()) # This is a public method

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 29/33

Python Python -- object oriented prog. (access rights)object oriented prog. (access rights)
 protected attributes and methods are marked by a single underscore _

at the beginning of the name

 this is a convention indicating that the attribute or method should not be
used outside the class or its subclasses, although technically it is still
accessible

class MyClass:
def __init__(self):

self._protected_attribute = "Protected access"

def _protected_method(self):
return "This is a protected method"

instance = MyClass()
print(instance._protected_attribute) # Access allowed,

not recommended
print(instance._protected_method()) # Access allowed,

not recommended

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 30/33

Python Python -- object oriented prog. (access rights)object oriented prog. (access rights)
 private attributes and methods are marked by two underscores __

at the beginning of the name

 Python uses name mangling to make it more difficult to access these
elements from outside the class; it modifies the name by adding a prefix
_ClassName

class MyClass:
def __init__(self):

self.__private_attribute = "Private access"

def __private_method(self):
return "This is a private method"

instance = MyClass()
print(instance.__private_attribute)
print(instance.__private_method())

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 31/33

Python Python -- object oriented prog. (access rights)object oriented prog. (access rights)
 private attributes and methods are marked by two underscores __

at the beginning of the name

 Python uses name mangling to make it more difficult to access these
elements from outside the class; it modifies the name by adding a prefix
_ClassName

class MyClass:
def __init__(self):

self.__private_attribute = "Private access"

def __private_method(self):
return "This is a private method"

instance = MyClass()
print(instance.__private_attribute)
print(instance.__private_method())

Traceback (most recent call last):
File "d:\tempCodeRunnerFile.py", line 9, in <module>

print(instance.__private_attribute)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

AttributeError: 'MyClass' object has no attribute
'__private_attribute'. Did you mean:
'_MyClass__private_attribute'?

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 32/33

Python Python -- object oriented prog. (access rights)object oriented prog. (access rights)
 it is possible to access private attributes and methods via name mangling,

but this is not recommended

class MyClass:
def __init__(self):

self.__private_attribute = "Private access"

def __private_method(self):
return "This is a private method"

instance = MyClass()

Name mangling:
print(instance._MyClass__private_attribute)
print(instance._MyClass__private_method())

Private access
This is a private method

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 33/33

End of lecture no. End of lecture no. 1010

Thank you for your attention!Thank you for your attention!

