
Python Programming 1Python Programming 1

BiałystokBiałystok University of TechnologyUniversity of Technology
Faculty of Electrical EngineeringFaculty of Electrical Engineering

Industry Digitization, semester IIndustry Digitization, semester III
Academic year 2024/2025Academic year 2024/2025

Lecture no. Lecture no. 1010 ((2121.0.055.2025).2025)

Jarosław Forenc, PhD

(CP1S02005E)(CP1S02005E)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 2/33

TopicsTopics
 Object-Oriented Programming

 definitions, class structure
 constructor, attributes and methods
 inheritance
 multiple inheritance
 access rights

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 3/33

Python Python -- object oriented programmingobject oriented programming
 object-oriented programming is a programming paradigm in which

programs are constructed by defining and manipulating objects
 in Python, object-oriented programming is based on three main elements:

classes, objects, and inheritance
 a class is a template or blueprint that defines the properties and behaviors

of objects (in a sense, it creates a new type)
 an object is an instance of a class (a variable of the created type)
 attributes are the properties of objects that store data; in Python, new

attributes can be added to an object at any time
 methods are functions defined inside a class that operate on objects

of that class; these methods have access to the object's attributes
and can manipulate them

 inheritance allows the creation of new (derived) classes based on existing
(base or parent) classes; the derived class inherits the attributes and
methods of the base class

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 4/33

Python Python -- object oriented programming (classes)object oriented programming (classes)
 general structure of a class definition in Python

class ClassName:
Class attributes
variable = "value"

Constructor
def __init__(self, parameters):

self.parameters = parameters

Class methods
def method(self):

method code
return something

 a class consists of a class
header and a class body

 the header begins with the
keyword class, followed by
the class name

 by convention, the class
name starts with a capital
letter

 the class body contains the
attributes and methods that
define the behavior and
properties of objects created
from that class

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 5/33

Python Python -- object oriented programming (classes)object oriented programming (classes)
 class definition of Person, object declaration smith

class Person:

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

def print(self):
print(f"{self.fname} {self.lname}, {self.age}

years old")

smith = Person("John","Smith",25)
smith.print()

John Smith, 25 years old

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 6/33

Python Python -- object oriented programming (constructor)object oriented programming (constructor)

 __init__ - the constructor, a special method called when a new instance
(object) of the class is created

 double underscores at the beginning and end are a naming convention
used to avoid conflicts with other methods that might be defined later
with the same names

 the first parameter of the constructor should be named self - this is
a reference to the instance of the class itself

 thanks to self, object instances gain access to the attributes and methods
defined in the class

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

smith = Person("Johnn","Smith",25)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 7/33

Python Python -- object oriented programming (constructor)object oriented programming (constructor)

 __init__ - the constructor, a special method called when a new instance
(object) of the class is created

 the constructor receives the arguments fname, lname and age, while
the self argument is passed automatically

 variables preceded by self are attributes, and they are accessible
to every method within the class

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

smith = Person("Johnn","Smith",25)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 8/33

Python Python -- object oriented programming (constructor)object oriented programming (constructor)

 __init__ - the constructor, a special method called when a new instance
(object) of the class is created

 self.fname = fname takes the value stored in the fname parameter,
assigns it to the fname attribute, and this attribute is then attached
to the instance being created

 there is no return statement in the constructor, but Python automatically
returns the instance of the Person class

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

smith = Person("Johnn","Smith",25)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 9/33

Python Python -- object oriented programming (methods)object oriented programming (methods)

 the print() method does not require any additional data, so it has only
one parameter - self

 calling the method:

 calling the print() method on the object instance smith:

def print(self):
print(f"{self.fname} {self.lname}, {self.age} years old")

instance_name.method_name(arguments)

smith = Person("John","Smith",25)
smith.print()

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 10/33

Python Python -- object oriented programming (__str__)object oriented programming (__str__)
 instead of the print() method, you can use the built-in __str__ method,

which is called automatically when the object is converted to a string using
the str() function or when the object is used in a context where a string is
expected, such as in the print() function

class Person:

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

def __str__(self):
return f"{self.fname} {self.lname}, {self.age}

years old"

smith = Person("John","Smith",25)
print(smith)

John Smith, 25 years old

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 11/33

Python Python -- object oriented programming (example)object oriented programming (example)
 a class describing a triangle

class Triangle:
def __init__(self, a, h):

self.a = a # base
self.h = h # height

def area(self):
return (self.a * self.h) / 2

def __str__(self):
return f"[a = {self.a}, h = {self.h}]"

tr1 = Triangle(6, 8)
print(tr1)
print(f"Area of triangle: {tr1.area():.2f}")

[a = 6, h = 8]
Area of triangle: 24.00

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 12/33

Python Python -- object oriented programming (example)object oriented programming (example)
 access to class attributes

 method invocation

instance_name.attribute_name

instance_name.method_name()

tr1 = Triangle(6, 8)
tr1.a = 5
tr1.h = 9

tr1 = Triangle(6, 8)
p = tr1.area()
print(f"Area of triangle: {tr1.area():.2f}")

tr1.a
tr1.h

tr1.area()
tr1.area()

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 13/33

Python Python -- object oriented programmingobject oriented programming
 it is possible to create multiple instances (objects) based on a single class

class Person:

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

def __str__(self):
return f"{self.fname} {self.lname}, {self.age}

years old"

smith = Person("John","Smith",25)
print(smith)

brown = Person("Kate","Brown",18)
print(brown) John Smith, 25 years old

Kate Brown, 18 years old

smith = Person("John","Smith",25)
print(smith)

brown = Person("Kate","Brown",18)
print(brown)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 14/33

Python Python -- object oriented programmingobject oriented programming
 not all attributes need to have values passed during initialization -

there can be attributes with default values

class Person:
children = 0

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

def __str__(self):
return f"{self.fname} {self.lname}, {self.age}

years old, children: {self.children}"

smith = Person("John","Smith",25)
print(smith)

John Smith, 25 years old, children: 0

children = 0

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 15/33

Python Python -- object oriented programmingobject oriented programming
 not all attributes need to have values passed during initialization -

there can be attributes with default values

class Person:

def __init__(self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age
self.children = 0

def __str__(self):
return f"{self.fname} {self.lname}, {self.age}

years old, children: {self.children}"

smith = Person("John","Smith",25)
print(smith)

John Smith, 25 years old, children: 0

self.children = 0

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 16/33

Python Python -- object oriented programmingobject oriented programming
 an attribute's value can be changed directly in an instance (object)

 an attribute's value can be changed using a method

John Smith, 25 years old, children: 2

smith = Person("John","Smith",25)
smith.children = 2
print(smith)
smith.children = 2

class Person:
...
def save_children(self, number_of_children):

self.children = number_of_children

smith = Person("John","Smith",25)
smith.save_children(3)
print(smith)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 17/33

Python Python -- object oriented programmingobject oriented programming
 an attribute's value can be changed directly in an instance (object)

 an attribute's value can be changed using a method

class Person:
...
def add_child(self):

self.children += 1

smith = Person("John","Smith",25)
smith.add_child()
print(smith)

John Smith, 25 years old, children: 2

smith = Person("John","Smith",25)
smith.children = 2
print(smith)
smith.children = 2

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 18/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)
 inheritance is a technique that allows the creation of new classes based

on existing ones

 a class from which other classes inherit is called a base class (also known
as a parent class or superclass)

 the new class is called a derived class (also known
as a child class or subclass)

 the new class automatically inherits the attributes
and methods of the base class

 a derived class can also define new attributes
and methods

first name
Person

last name
age

semester
Student

faculty

base class

derived class

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 19/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 20/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)

class Person:
def __init__(self, fname, lname):

self.fname = fname
self.lname = lname

def __str__(self):
return f"Person: {self.fname} {self.lname}"

class Student(Person):
def __init__(self, fname, lname, semester, faculty):

super().__init__(fname, lname)
self.semester = semester
self.faculty = faculty

def __str__(self):
return (f"Student: {self.fname} {self.lname}, "

f"semester: {self.semester}, faculty: "
f"{self.faculty}")

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 21/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)
 the base class must be located in the same file where the derived class

is created

 the name of the base class must be included in the header of derived class

 in the __init__() method of the derived class, we call the __init__()
method from the base class

 super() is a built-in function that returns a special object (called
a delegate), which allows access to methods and attributes of the base
class from within the derived class

 super() is used to call the constructor or methods of the base class;
the function name comes from the term "superclass"

class Student(Person):

super().__init__(fname, lname)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 22/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)
 creating objects and calling methods

person = Person("John", "Smith")
student = Student("Kate", "Brown", 3, "EE")

print(person)
print(student)

print(f"First name: {student.fname}")
print(f"Last name: {student.lname}")
print(f"Semester: {student.semester}")
print(f"Faculty: {student.faculty}")

Person: John Smith
Student: Kate Brown, semester: 3, faculty: EE
Fisrt name: Kate
Last name: Brown
Semester: 3
Faculty: EE

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 23/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)
 any method from the base class can be overridden

class Vehicle:
def __init__(self, brand, model):

self.brand = brand
self.model = model

def desc(self):
return f"Vehicle brand {self.brand}, model {self.model}"

class Car(Vehicle):
def __init__(self, brand, model, year):

super().__init__(brand, model)
self.year = year

def desc(self):
basic_desc = super().desc()
return f"{basic_desc}, year of production: {self.year}"

def desc(self):
return f"Vehicle brand {self.brand}, model {self.model}"

def desc(self):
basic_desc = super().desc()
return f"{basic_desc}, year of production: {self.year}"

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 24/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)
 a method from the derived class overrides the visibility of a method from

the base class

 using the super() function, one can refer to a method from the base class

vehicle = Vehicle("Toyota", "Corolla")
car = Car("BMW", "X5", 2022)

print(vehicle.desc())
print(car.desc())

Vehicle brand Toyota, model Corolla
Vehicle brand BMW, model X5, year of production: 2022

def desc(self):
basic_desc = super().desc()
return f"{basic_desc}, rok produkcji: {self.rok}"

super().desc()

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 25/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)
 single inheritance - a derived class inherits from one base class

 multiple inheritance - a derived class inherits from more than one base class

base class

Person

Student

derived class

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 26/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)

class A:
def __init__(self):

self.feature_a = "Feature from class A"

def method_a(self):
return "Method from class A"

class B:
def __init__(self):

self.feature_b = "Feature from class B"

def method_b(self):
return "Method from class B"

class C(A, B):
def __init__(self):

A.__init__(self)
B.__init__(self)
self.feature_c = "Feature from class C"

def method_c(self):
return "Method from class C"

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 27/33

Python Python -- object oriented programming (inheritance)object oriented programming (inheritance)

instance = C()
print(instance.feature_a)
print(instance.feature_b)
print(instance.feature_c)

print(instance.method_a())
print(instance.method_b())
print(instance.method_c())

Feature from class A
Feature from class B
Feature from class C
Method from class A
Method from class B
Method from class C

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 28/33

Python Python -- object oriented prog. (access rights)object oriented prog. (access rights)
 Python does not have formal access modifiers like in C++ (e.g., public,

protected, private)

 instead, naming conventions and certain mechanisms are used to indicate
levels of access to class attributes and methods.

 by default, all attributes and methods are public - this means they are
accessible from outside the class; there are no special name prefixes

class MyClass:
def __init__(self):

self.public_attribute = "Public access"

def public_method(self):
return "This is a public method"

instance = MyClass()
print(instance.public_attribute) # Public access
print(instance.public_method()) # This is a public method

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 29/33

Python Python -- object oriented prog. (access rights)object oriented prog. (access rights)
 protected attributes and methods are marked by a single underscore _

at the beginning of the name

 this is a convention indicating that the attribute or method should not be
used outside the class or its subclasses, although technically it is still
accessible

class MyClass:
def __init__(self):

self._protected_attribute = "Protected access"

def _protected_method(self):
return "This is a protected method"

instance = MyClass()
print(instance._protected_attribute) # Access allowed,

not recommended
print(instance._protected_method()) # Access allowed,

not recommended

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 30/33

Python Python -- object oriented prog. (access rights)object oriented prog. (access rights)
 private attributes and methods are marked by two underscores __

at the beginning of the name

 Python uses name mangling to make it more difficult to access these
elements from outside the class; it modifies the name by adding a prefix
_ClassName

class MyClass:
def __init__(self):

self.__private_attribute = "Private access"

def __private_method(self):
return "This is a private method"

instance = MyClass()
print(instance.__private_attribute)
print(instance.__private_method())

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 31/33

Python Python -- object oriented prog. (access rights)object oriented prog. (access rights)
 private attributes and methods are marked by two underscores __

at the beginning of the name

 Python uses name mangling to make it more difficult to access these
elements from outside the class; it modifies the name by adding a prefix
_ClassName

class MyClass:
def __init__(self):

self.__private_attribute = "Private access"

def __private_method(self):
return "This is a private method"

instance = MyClass()
print(instance.__private_attribute)
print(instance.__private_method())

Traceback (most recent call last):
File "d:\tempCodeRunnerFile.py", line 9, in <module>

print(instance.__private_attribute)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

AttributeError: 'MyClass' object has no attribute
'__private_attribute'. Did you mean:
'_MyClass__private_attribute'?

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 32/33

Python Python -- object oriented prog. (access rights)object oriented prog. (access rights)
 it is possible to access private attributes and methods via name mangling,

but this is not recommended

class MyClass:
def __init__(self):

self.__private_attribute = "Private access"

def __private_method(self):
return "This is a private method"

instance = MyClass()

Name mangling:
print(instance._MyClass__private_attribute)
print(instance._MyClass__private_method())

Private access
This is a private method

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 10 33/33

End of lecture no. End of lecture no. 1010

Thank you for your attention!Thank you for your attention!

