Python Programming 1

(CP1S02005E)

Biatystok University of Technology

Faculty of Electrical Engineering

Industry Digitization, semester II
Academic year 2024/2025

Lecture no. 10 (21.05.2025)

Jarostaw Forenc, PhD

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 10

Topics

Object-Oriented Programming

O

O
O
O
O

definitions, class structure
constructor, attributes and methods
inheritance

multiple inheritance

access rights

Jarostaw Forenc, PhD
2/33

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 3/33

Python - object oriented programming

O

object-oriented programming is a programming paradigm in which
programs are constructed by defining and manipulating objects

in Python, object-oriented programming is based on three main elements:
classes, objects, and inheritance

a class is a template or blueprint that defines the properties and behaviors
of objects (in a sense, it creates a new type)

an object is an instance of a class (a variable of the created type)

attributes are the properties of objects that store data; in Python, new
attributes can be added to an object at any time

methods are functions defined inside a class that operate on objects
of that class; these methods have access to the object's attributes
and can manipulate them

inheritance allows the creation of new (derived) classes based on existing
(base or parent) classes; the derived class inherits the attributes and
methods of the base class

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 10

Jarostaw Forenc, PhD
4/33

Python - object oriented programming (classes)

O general structure of a class definition in Python

class ClassName:
Class attributes
variable = "value"

Constructor
def init_ (self,
self.parameters

Class methods

def method(self):
method code
return something

parameters):
= parameters

O

a class consists of a class
header and a class body

the header begins with the
keyword class, followed by
the class name

by convention, the class
name starts with a capital
letter

the class body contains the
attributes and methods that
define the behavior and
properties of objects created
from that class

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 10

Jarostaw Forenc, PhD
5/33

Python - object oriented programming (classes)

o class definition of Person, object declaration smith

class Person:

def init (self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

def print(self):
years old")

smith = Person("John","Smith",25)
smith.print()

print(f"{self.fname} {self.lname}, {self.age}

John Smith, 25 years old

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 6/33

Python - object oriented programming (constructor)

def init (self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

o __init__ - the constructor, a special method called when a new instance
(object) of the class is created

smith

Person("Johnn","Smith",25)

o0 double underscores at the beginning and end are a naming convention
used to avoid conflicts with other methods that might be defined later
with the same names

o the first parameter of the constructor should be named self - this is
a reference to the instance of the class itself

o thanks to self, object instances gain access to the attributes and methods
defined in the class

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 7/33

Python - object oriented programming (constructor)

def init (self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

o __init__ - the constructor, a special method called when a new instance
(object) of the class is created

Person("Johnn","Smith",25)

smith

o the constructor receives the arguments fname, Iname and age, while
the self argument is passed automatically

o variables preceded by self are attributes, and they are accessible
to every method within the class

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 8/33

Python - object oriented programming (constructor)

def init (self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

o __init__ - the constructor, a special method called when a new instance
(object) of the class is created

smith

Person("Johnn","Smith",25)

o self.fname = fname takes the value stored in the fname parameter,
assigns it to the fname attribute, and this attribute is then attached
to the instance being created

o thereis no return statement in the constructor, but Python automatically
returns the instance of the Person class

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 9/33

Python - object oriented programming (methods)

def print(self):
print(f"{self.fname} {self.lname}, {self.age} years old")

o the print() method does not require any additional data, so it has only
one parameter - self

o calling the method:

instance_name.method_name(arguments)

o calling the print() method on the object instance smith:

smith = Person("John","Smith",25)
smith.print()

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 10

Jarostaw Forenc, PhD
10/33

Python - object oriented programming (__str_)

O instead of the print() method, you can use the built-in __str method,
which is called automatically when the object is converted to a string using
the str() function or when the object is used in a context where a string is

expected, such as in the print() function

class Person:

self.fname = fname
self.lname = lname
self.age = age

def str_ (self):
years old"

smith = Person("John","Smith",25)
print(smith)

def init (self, fname, lname, age):

return f"{self.fname} {self.lname}, {self.age}

John Smith, 25 years old

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 10

Jarostaw Forenc, PhD
11/33

Python - object oriented programming (example)

O

a class describing a triangle

class Triangle:

def init (self, a, h):

self.a
self.h

a # base
h # height

def area(self):
return (self.a * self.h) / 2

def str_ (self):
return f"[a = {self.a}, h = {self.h}]"

trl = Triangle(6, 8)

print(trl)

print(f"Area of triangle: {tril.area():.2f}")

[a = 6, h = 8]

Area of triangle: 24.00

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 10

Jarostaw Forenc, PhD
12/33

Python - object oriented programming (example)

O

access to class attributes

instance_name.attribute_name

trl = Triangle(6, 8)
trl.a = 5
trl.h = 9

method invocation

instance _name.method_name()

trl = Triangle(6, 8)
p = trl.area()
print(f"Area of triangle: {trl.area()

:.2F}")

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 13/33

Python - object oriented programming

O itis possible to create multiple instances (objects) based on a single class

class Person:

print(smith)

print(brown)

def init (self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

def str_ (self):
return f"{self.fname} {self.lname}, {self.age}

smith = Person("John","Smith",25)

brown = Person("Kate","Brown",18)

years old"

John Smith, 25 years old
Kate Brown, 18 years old

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 14/33

Python - object oriented programming

o not all attributes need to have values passed during initialization -
there can be attributes with default values

class Person:
children = 0

def init (self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age

def str_ (self):
return f"{self.fname} {self.lname}, {self.age}
years old, children: {self.children}"

smith = Person("John","Smith",25)
print(smith)

John Smith, 25 years old, children: 0

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 10

Jarostaw Forenc, PhD
15/33

Python - object oriented programming

o not all attributes need to have values passed during initialization -

there can be attributes with default values

class Person:

def init (self, fname, lname, age):
self.fname = fname
self.lname = lname
self.age = age
self.children = ©

def str_ (self):

smith = Person("John","Smith",25)
print(smith)

return f"{self.fname} {self.lname}, {self.age}
years old, children: {self.children}"

John Smith, 25 years old, children: 0

Python Programming 1 (CP1S02005E)

Academic year 2024/2025, Lecture no. 10

Jarostaw Forenc, PhD

16/33

Python - object oriented programming

O

O

an attribute's value can be changed directly in an instance (object)

smith = Person("John","Smith",25)
smith.children = 2
print(smith)

John Smith, 25 years old, children: 2

an attribute's value can be changed using a method

class Person:

def save children(self, number_of_children):

self.children = number_of_children

smith = Person("John","Smith",25)
smith.save_children(3)
print(smith)

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 10

Jarostaw Forenc, PhD
17/33

Python - object oriented programming

O

O

an attribute's value can be changed directly in an instance (object)

smith = Person("John","Smith",25)
smith.children = 2
print(smith)

John Smith, 25 years old, children: 2

an attribute's value can be changed using a method

class Person:

def add child(self):
self.children += 1

smith = Person("John","Smith",25)
smith.add_child()
print(smith)

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 18/33

Python - object oriented programming (inheritance)

O

inheritance is a technique that allows the creation of new classes based
on existing ones

a class from which other classes inherit is called a base class (also known
as a parent class or superclass)

the new class is called a derived class (also known base class
as a child class or subclass) Person
the new class automatically inherits the attributes :"Stt name
and methods of the base class ::e name
a derived class can also define new attributes T
and methods
Student
semester
faculty

derived class

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 19/33

Python - object oriented programming (inheritance)

base class
Person Person
first name first name
last name last name
age age
Student Teacher Student Teacher
semester department semester department
faculty teaching hours faculty teaching hours
derived class derived class T T
PhD Student
supervisor

multiple base inheritance

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 20/33

Python - object oriented programming (inheritance)

class Person:
def init (self, fname, lname):
self.fname = fname
self.lname = lname

def __str__(self):
return f"Person: {self.fname} {self.lname}"

class Student(Person):
def init (self, fname, lname, semester, faculty):
super(). init_ (fname, lname)
self.semester = semester
self.faculty = faculty

def str_ (self):
return (f"Student: {self.fname} {self.lname}, "

f"semester: {self.semester}, faculty: "
f"{self.faculty}")

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 21/33

Python - object oriented programming (inheritance)

O

the base class must be located in the same file where the derived class
is created

the name of the base class must be included in the header of derived class

class Student(Person):

in the __init__() method of the derived class, we call the __init__ ()
method from the base class

super(). init_(fname, lname)

super() is a built-in function that returns a special object (called
a delegate), which allows access to methods and attributes of the base
class from within the derived class

super() is used to call the constructor or methods of the base class;
the function name comes from the term "superclass"

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 22/33

Python - object oriented programming (inheritance)

O creating objects and calling methods

person = Person("John", "Smith")
student = Student("Kate", "Brown", 3, "EE")

print(person)
print(student)

print(f"First name: {student.fname}")
print(f"Last name: {student.lname}")
print(f"Semester: {student.semester}")
print(f"Faculty: {student.faculty}")

Person: John Smith

Student: Kate Brown, semester: 3, faculty: EE
Fisrt name: Kate

Last name: Brown

Semester: 3

Faculty: EE

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 23/33

Python - object oriented programming (inheritance)

o any method from the base class can be overridden

class Vehicle:
def init (self, brand, model):
self.brand = brand
self.model = model

def desc(self):
return f"Vehicle brand {self.brand}, model {self.model}"

class Car(Vehicle):
def init_ (self, brand, model, year):
super(). init_(brand, model)
self.year = year

def desc(self):
basic_desc = super().desc()
return f"{basic_desc}, year of production: {self.year}"

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 24/33

Python - object oriented programming (inheritance)

o a method from the derived class overrides the visibility of a method from
the base class

vehicle = Vehicle("Toyota", "Corolla")
car = Car‘("BMW", "X5", 2922)

print(vehicle.desc())
print(car.desc())

Vehicle brand Toyota, model Corolla
Vehicle brand BMW, model X5, year of production: 2022

O using the super() function, one can refer to a method from the base class

def desc(self):
basic_desc = super().desc()
return f"{basic_desc}, rok produkcji: {self.rok}"

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 25/33

Python - object oriented programming (inheritance)

O single inheritance - a derived class inherits from one base class

o multiple inheritance - a derived class inherits from more than one base class

base class base class base class
Person Car Boat

T 1 A
Student Amphibious

derived class derived class

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 26/33

Python - object oriented programming (inheritance)

class A:
def init (self):
self.feature_a = "Feature from class A"

def method a(self):
return "Method from class A"

class B:
def init (self):
self.feature_b = "Feature from class B"

def method b(self):
return "Method from class B"

class C(A, B):
def init (self):
A. init__ (self)
B. init_ (self)
self.feature_c = "Feature from class C"

def method c(self):
return "Method from class C"

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 27/33
1

Python - object oriented programming (inheritance)

instance = C()

print(instance.feature_a)
print(instance.feature_b)
print(instance.feature c)

print(instance.method_a())
print(instance.method_b())
print(instance.method_c())

Feature from class A
Feature from class B
Feature from class C
Method from class A
Method from class B
Method from class C

Python Programming 1 (CP1S02005E)
Academic year 2024/2025, Lecture no. 10

Jarostaw Forenc, PhD
28/33

Python - object oriented prog. (access rights)

O

Python does not have formal access modifiers like in C++ (e.g., public,
protected, private)

instead, naming conventions and certain mechanisms are used to indicate

levels of access to class attributes and methods.

by default, all attributes and methods are public - this means they are
accessible from outside the class; there are no special name prefixes

class MyClass:
def init (self):
self.public_attribute = "Public access"”

def public_method(self):
return "This is a public method"

instance = MyClass()
print(instance.public_attribute) # Public access
print(instance.public_method()) # This is a public method

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 29/33

Python - object oriented prog. (access rights)

O protected attributes and methods are marked by a single underscore _
at the beginning of the name

o this is a convention indicating that the attribute or method should not be
used outside the class or its subclasses, although technically it is still
accessible

class MyClass:
def init (self):
self. protected_attribute = "Protected access”

def _protected _method(self):
return "This is a protected method"

instance = MyClass()

print(instance. protected_attribute) # Access allowed,
not recommended

print(instance._ protected method()) # Access allowed,
not recommended

Python Programming 1 (CP1S02005E)

Academic year 2024/2025, Lecture no. 10

Jarostaw Forenc, PhD

30/33

Python - object oriented prog. (access rights)

O

private attributes and methods are marked by two underscores _
at the beginning of the name

Python uses name mangling to make it more difficult to access these
elements from outside the class; it modifies the name by adding a prefix

_ClassName

class MyClass:
def init (self):
self. private_attribute = "Private access"

def _ private_method(self):
return "This is a private method"

instance = MyClass()
print(instance.__private_attribute)
print(instance.__private_method())

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 31/33

Python - object oriented prog. (access rights)

O

private attributes and methods are marked by two underscores _
at the beginning of the name

Python uses name mangling to make it more difficult to access these
elements from outside the class; it modifies the name by adding a prefix
_ClassName

class MyClass:
def init (self):

self. private_attribute = "Private access"

Qe T~ L2~ G2\

instal
print
print

Traceback (most recent call last):
File "d:\tempCodeRunnerFile.py", line 9, in <module>

print (instance. private attribute)
AAAAANAAAAAANAAANAAANAAANAAAAAANAAAANAANAAANANAN

AttributeError: 'MyClass' object has no attribute
' private attribute'. Did you mean:

' MyClass_private attribute'?

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 32/33

Python - object oriented prog. (access rights)

O it is possible to access private attributes and methods via name mangling,
but this is not recommended

class MyClass:
def init (self):
self. private_attribute = "Private access”

def _ private_method(self):
return "This is a private method"

instance = MyClass()

Name mangling:
print(instance._MyClass__private_attribute)
print(instance. MyClass__private_method())

Private access
This is a private method

Python Programming 1 (CP1S02005E) Jarostaw Forenc, PhD
Academic year 2024/2025, Lecture no. 10 33/33

End of lecture no. 10

Thank you for your attention!

