
Python Programming 1Python Programming 1

Białystok University of TechnologyBiałystok University of Technology
Faculty of Electrical EngineeringFaculty of Electrical Engineering

Industry Digitization, semester IIIndustry Digitization, semester II
Academic year 2024/2025Academic year 2024/2025

Lecture no. 11 (28.05.2025)Lecture no. 11 (28.05.2025)

Jarosław Forenc, PhD

(CP1S02005E)(CP1S02005E)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 2/27

TopicsTopics
 Python Standard Library

 built-in functions
 built-in constants
 built-in types
 built-in exceptions
 modules (e.g., string, datetime, zoneinfo, calendar)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 3/27

Python Python -- Standard LibraryStandard Library
 a collection of modules and packages distributed with the core installation

of the Python language

 documentation: https://docs.python.org/3/library/index.html

 the library is extensive and includes many well-tested and efficient functions
and modules

 the library includes modules:
 built-in, written in C - providing access to system-level functionality,

such as file operations
 written in Python - offering standard solutions for many problems

encountered during everyday programming
 on Windows, the Python installer includes the full standard library

and many additional components

 on Linux/Unix, Python is distributed as a collection of packages, so it may
be necessary to install some components manually

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 4/27

Python Python -- Standard LibraryStandard Library
 the standard library includes:

 built-in functions and constants
 built-in types and exceptions
 modules

 example purposes of modules:
 text and binary data processing services, data types
 numerical and mathematical modules
 file and directory access, data compression and archiving
 cryptographic services, general OS services
 networking and interprocess communication, internet data handling
 internet protocols and support, multimedia services
 internationalization, developer tools, module importing

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 5/27

Python Python -- list of builtlist of built--in functionsin functions

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 6/27

Python Python -- list of builtlist of built--in functionsin functions

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 7/27

Python Python -- list of builtlist of built--in constantsin constants
 True - represents the Boolean value true (bool type)

 False - represents the Boolean value false (bool type)

 None - represents the absence of a value or null; used when, for example,
default arguments are not provided to a function (NoneType)

 NotImplemented - a special value used to indicate that a method is not
implemented for certain data types

 Ellipsis - represented by ... (three dots); mainly used in special cases like
slicing in multidimensional arrays

 debug - a constant that is True when Python runs in debug mode

 copyright, credits, license - informational constants displaying Python’s
copyright, credits, and license

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 8/27

Python Python -- llistist of of bbuiltuilt--in in cconstantsonstants

print(copyright)
print(credits)
print(license)

Copyright (c) 2001-2023 Python Software Foundation.
All Rights Reserved.

Copyright (c) 2000 BeOpen.com.
All Rights Reserved.

Copyright (c) 1995-2001 Corporation for National Research
Initiatives.
All Rights Reserved.

Copyright (c) 1991-1995 Stichting Mathematisch Centrum,
Amsterdam.
All Rights Reserved.

Thanks to CWI, CNRI, BeOpen.com, Zope Corporation and a cast
of thousands

for supporting Python development. See www.python.org for
more information.
Type license() to see the full license text

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 9/27

Python Python -- list of builtlist of built--in typesin types
 numeric types:

 int - integers, arbitrarily large (no size limit), e.g., a = 23
 float - floating-point numbers, similar to double in C, e.g., b = 2.5
 complex - complex numbers with real and imaginary parts, e.g., z = 2 + 5j

 sequence types:
 list - a dynamic array of elements of any type, mutable - its content can be

changed after creation, e.g., lst = [1, 2, 3]
 tuple - an immutable sequence of elements - cannot be changed after

creation, e.g., t = (1, 2, 3, 'x', 'y', 'z')
 range - lazily generates a sequence of integers (numbers are generated on

demand, not stored in memory), e.g., r = range(100)

 text type:
 str - a string of characters (text); uses Unicode encoding, e.g., txt = "Hello"

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 10/27

Python Python -- list of builtlist of built--in typesin types
 binary types:

 bytes - an immutable sequence of bytes (values 0–255), e.g., b = b'hello'
 bytearray - a mutable sequence of bytes, e.g., ba = bytearray(b'hello')
 memoryview - enables efficient operations on large binary objects without

copying them, e.g., mv = memoryview(b'hello')

 set types:
 set - a mutable set of unique elements, e.g., s = {1, 2}
 frozenset - an immutable set of unique elements, e.g.,

fs = frozenset([1, 2, 3, 'x', 'y', 'z'])

 mapping type:
 dict - a dictionary, a collection of key-value pairs where keys are unique,

and each key maps to one value, e.g., d = {'k1': 'v1', 'k2': 'v2'}

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 11/27

Python Python -- list of builtlist of built--in typesin types
 boolean type:

 bool - represents the boolean values True and False; it is a subtype of int
(inherits all of its properties), e.g., b = True

 special type:
 NoneType - represented by the single object None; signifies the absence

of a value or nonexistence, e.g., n = None

 built-in iterable types:
 enumerate - a function that returns an iterator producing tuples containing

the index and the corresponding element from a sequence, e.g.,
e = enumerate(['x', 'y', 'z'])

 reversed - a function that returns an iterator that yields the elements
of a sequence in reverse order, e.g., r = reversed([6, 7, 8])

 zip - a function that returns an iterator that aggregates elements from
multiple iterables, e.g., z = zip([6, 7, 8], ['x', 'y', 'z'])

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 12/27

Python Python -- list of builtlist of built--in typesin types
 function types:

 function - a function defined using the def keyword or a lambda, e.g.,
def func(x): return x ** 2

 lambda - an anonymous function with any number of arguments but only
one expression, e.g., f = lambda x: x ** 2

 class and object types:
 class - a class defined using the class keyword, e.g., class MyClass: pass
 object - the base class for all classes, e.g., o = object()

 exception types:
 BaseException - the base class for all exceptions
 Exception - the base class for most built-in exceptions related to common

programming errors

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 13/27

Python Python -- list of builtlist of built--in exceptionsin exceptions
 exceptions are special objects used by Python to handle errors that may

occur during program execution

try:
code that might raise an exception

except ExceptionType:
exception handling

finally:
code that will always execute

try:
code that might raise an exception

except ExceptionType:
exception handling

else:
code that runs only if no exception occurred

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 14/27

Python Python -- list of builtlist of built--in exceptionsin exceptions
 Exception - the base class for all built-in exceptions in Python;

custom and standard exceptions derive from this class

 BaseException - the ultimate base class for all exceptions, including those
not related to typical errors (should not be used directly)

 KeyboardInterrupt - occurs when the user interrupts program execution
using a keyboard shortcut (Ctrl+C)

 SystemExit - occurs when the program exits using sys.exit();
catching this prevents the program from closing

 StopIteration - raised by iterators to signal the end of iteration
(automatically handled by for loops)

 AttributeError - raised when trying to access an attribute that does not exist
on an object

 EOFError - raised when input functions (like input() or read()) reach the end
of the file (EOF)

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 15/27

Python Python -- llistist of of bbuiltuilt--in in eexceptionsxceptions
 ArithmeticError - base class for all arithmetic-related exceptions:

 ZeroDivisionError - raised when dividing a number by zero
 OverflowError - raised when the result of an arithmetic operation

is too large to be represented
 FloatingPointError - raised for floating-point operation errors

 ImportError - raised when importing a module fails
 ModuleNotFoundError - raised when the specified module cannot be found

 IndexError - raised when a sequence index is out of range

 KeyError - raised when a dictionary key is not found

 MemoryError - raised when an operation runs out of memory

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 16/27

Python Python -- list of builtlist of built--in exceptionsin exceptions
 NameError - raised when a variable or symbol is not defined

 OSError - base class for operating system-related exceptions:
 FileNotFoundError - raised when a file or directory cannot be found
 PermissionError - raised when permission is denied to perform an operation
 IsADirectoryError - raised when a file operation is attempted on a directory
 NotADirectoryError - raised when a directory operation is attempted

on a non-directory object

 TypeError - raised when an operation or function is applied to an object
of an inappropriate type

 ValueError - raised when a function receives an argument of the right type
but an inappropriate value

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 17/27

Python Python -- string modulestring module
 the string module includes various functions and constants useful for string

manipulation

 list of constants:
 string.ascii_letters - contains all alphabetic letters (upper- and lowercase)

 string.ascii_lowercase - contains all lowercase alphabetic letters
 string.ascii_uppercase - contains all uppercase alphabetic letters
 string.digits - contains all decimal digits (0-9)
 string.hexdigits - contains all hexadecimal digits (0-9, a-f, A-F)
 string.octdigits - contains all octal digits (0–7)

import string
print(string.ascii_letters)

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 18/27

Python Python -- string modulestring module
 list of constants:

 string.punctuation - contains all punctuation characters
 string.printable - contains all characters considered printable,

i.e., letters, digits, punctuation, and whitespace
 string.whitespace - contains all whitespace characters (spaces, tabs,

newlines)

import string
txt = """In February 2024, 11,567 new PV installations
were created. Their total capacity amounted to 232.50 MW.
The largest group consists of micro-installations: 11,478
units with a total capacity of 100.33 MW."""

digits = [ch for ch in txt if ch in string.digits]
print(f"Number of digits in the text: {len(digits)}")

Number of digits in the text: 24

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 19/27

Python Python -- datetime moduledatetime module
 the datetime module is used for manipulating dates and times; it includes

many functions and classes that simplify operations such as creation,
comparison, formatting, and arithmetic

 classes in the module:
 datetime - represents both date and time as a single object
 date - represents only the date (no time)
 time - represents only the time (no date)
 timedelta - represents the difference between two dates or times

 these classes allow arithmetic operations like addition and subtraction
with dates and times

 objects of these classes can be compared using comparison operators
such as <, <=, >, >=, ==, and !=

 they also provide methods to access individual components like year,
month, day, hour, minute, second

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 20/27

Python Python -- datetime moduledatetime module

import datetime

specific_date = datetime.datetime(2024, 5, 1, 12, 0, 0)
current_date = datetime.datetime.now()

print("Specific date:")
print("Year: ", specific_date.year)
print("Month: ", specific_date.month)
print("Day: ", specific_date.day)

print("\nCurrent date:")
print("Year: ", current_date.year)
print("Month: ", current_date.month)
print("Day: ", current_date.day)
print("Hour: ", current_date.hour)
print("Minute:", current_date.minute)
print("Second:", current_date.second)

Specific date:
Year: 2024
Month: 5
Day: 1

Current date:
Year: 2025
Month: 5
Day: 27
Hour: 21
Minute: 33
Second: 21

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 21/27

PythonPython -- zoneinfozoneinfo modulemodule
 the zoneinfo class enables working with time zones (available from

Python 3.9)

 it allows the creation of objects representing specific time zones, such as
"Europe/Warsaw", "America/New_York", "Asia/Tokyo", etc.

 zoneinfo objects contain information about time offsets, daylight saving
time changes, and other settings specific to a time zone

 this class allows for operations like converting between time zones or
checking if a datetime belongs to a specific zone

 zoneinfo objects automatically account for daylight saving time changes

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 22/27

Python Python -- zoneinfo modulezoneinfo module

 for the program to work correctly, the tzdata package must be installed:
pip install tzdata

from datetime import datetime
from zoneinfo import ZoneInfo

warsaw_time = datetime(2025, 5, 13, 10, 15,
tzinfo=ZoneInfo("Europe/Warsaw"))

print("Time in Warsaw: ", warsaw_time)

ny_time = warsaw_time.astimezone(ZoneInfo("America/New_York"))
print("Time in New York:", ny_time)

tokyo_time = warsaw_time.astimezone(ZoneInfo("Asia/Tokyo"))
print("Time in Tokyo: ", tokyo_time)

Time in Warsaw: 2025-05-13 10:15:00+02:00
Time in New York: 2025-05-13 04:15:00-04:00
Time in Tokyo: 2025-05-13 17:15:00+09:00

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 23/27

PythonPython -- calendarcalendar modulemodule
 the calendar module allows generating calendars and performing date-

related operations

 it enables creating calendars for specific years and months, accessing
weekday information, and performing arithmetic on dates

 functions like calendar.month() and calendar.calendar() generate calendars
for a specified month or year

 the TextCalendar class can generate calendars in text format and allows
customization, such as setting the first day of the week and formatting

 helper functions include calendar.weekday() (returns the weekday for
a given date) and calendar.monthrange() (returns the first weekday
and number of days in a month)

 the module also defines constants such as calendar.MONDAY,
calendar.TUESDAY, etc., which represent days of the week

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 24/27

Python Python -- calendar modulecalendar module

import calendar

print("Calendar for the month of May 2025:")
print(calendar.month(2025, 5))

Calendar for the month of May 2025:
May 2025

Mo Tu We Th Fr Sa Su
1 2 3 4

5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 25/27

Python Python -- calendar modulecalendar module

import calendar

print("Weekday number for May 16, 2025:")
print(calendar.weekday(2025, 5, 16))

print("Starting weekday and number of days in January
2025:")

print(calendar.monthrange(2025, 1))

print("Constants representing days of the week:")
print("Monday:", calendar.MONDAY)
print("Tuesday:", calendar.TUESDAY)

Weekday number for May 16, 2025:
4
Starting weekday and number of days in January 2025:
(calendar.WEDNESDAY, 31)
Constants representing days of the week:
Monday: 0
Tuesday: 1

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 26/27

Python Python -- calendar modulecalendar module

import calendar

print(calendar.calendar(2025))

2025

January February March
Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

1 2 3 4 5 1 2 1 2
6 7 8 9 10 11 12 3 4 5 6 7 8 9 3 4 5 6 7 8 9

13 14 15 16 17 18 19 10 11 12 13 14 15 16 10 11 12 13 14 15 16
20 21 22 23 24 25 26 17 18 19 20 21 22 23 17 18 19 20 21 22 23
27 28 29 30 31 24 25 26 27 28 24 25 26 27 28 29 30

31

April May June
Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

1 2 3 4 5 6 1 2 3 4 1
7 8 9 10 11 12 13 5 6 7 8 9 10 11 2 3 4 5 6 7 8

14 15 16 17 18 19 20 12 13 14 15 16 17 18 9 10 11 12 13 14 15
21 22 23 24 25 26 27 19 20 21 22 23 24 25 16 17 18 19 20 21 22
28 29 30 26 27 28 29 30 31 23 24 25 26 27 28 29

30

Python Programming 1 (CP1S02005E) Jarosław Forenc, PhD
Academic year 2024/2025, Lecture no. 11 27/27

End of lecture no. End of lecture no. 1111

Thank you for your attention!Thank you for your attention!

