Module name:	Electrical Circuits 1
Module ID:	IS-FEE-10070W
Module type:	Specialization Workshop
Semester:	winter 2024/2025
Instructor:	Jarosław Forenc, j.forenc@pb.edu.pl

Workshop 02 (28.10.2024)

1. Calculate the currents in all branches of the circuit shown in the figure using the Loop-Current Method. Then, use the PSpice program to determine the currents in all branches of the same circuit, and compare these results with the calculations.

E₁

1

 $R_2 = R_3 = 10 \Omega$, $R_4 = R_5 = 5 \Omega$, $J_6 = 2 A$, $E_1 = 60 V$, $E_5 = 20 V$

The report should include:

- an electrical circuit diagram,
- calculations of current values in all circuit branches,
- an electrical circuit diagram (from the PSpice program) showing the determined current values,
- conclusions: a comparison of calculation results with computer simulation results.

3

R₃

R₂

5 6

 R_5

J₆

Assume E = 9 V, R_{int} = 20 Ω . Vary the resistance R_{load} from 1 to 50 Ω in increments of 1 Ω . Based on the obtained graphs, determine the R_{load} value at which the maximum power transfer occurs.

The report should include:

- an electrical circuit diagram and a simulation circuit diagram (from the PSpice program),
- the graphs $P_{load} = f(R_{load})$ and $U_{load} = f(R_{load})$
- conclusions: determination of the R_{load} value at which maximum power transfer occurs.

3. Design a voltage divider in which the output voltage $U_{out} = \frac{1}{2} U_{in}$. To do this, determine the values of resistors R₁ and R₂ from the E12 series (10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82) or their series or parallel combinations. Using the PSpice program, perform a parametric analysis and check whether, after connecting a load R_L to the divider, which varies from 1 k Ω to 5 k Ω , the output voltage U_{out} does not drop by more than 10% of its original value. If it does, adjust the values of R₁ and R₂ accordingly. Assume U_{in} = 9 V.

The report should include:

- an electrical circuit diagram and a simulation circuit diagram (from the PSpice program),
- the values of resistances R_1 and R_2 ,
- graphs P_{out} = f(R_L),
- conclusions.