Module name: Electrical Circuits 2

Module ID:
Module type:
Semester:
Instructor:

IS-FEE-10085S
Class
summer 2023/2024
Jarosław Forenc, j.forenc@pb.edu.pl

Class 1 (27.02.2024)

1. Calculate the equivalent impedance of the circuit shown in the figure.
$\mathrm{R}_{1}=10 \Omega, \mathrm{R}_{2}=5 \Omega, \mathrm{R}_{3}=15 \Omega$,
$\mathrm{L}_{1}=50 \mathrm{mH}, \mathrm{L}_{3}=200 \mathrm{mH}, \mathrm{C}_{2}=1 \mathrm{mF}$,
$\omega=100 \mathrm{rad} / \mathrm{s}$

2. Calculate meter readings in the circuit shown in the figure.
$u(t)=230 \sqrt{2} \sin \omega t V, L=0.2 H, R L=40 \Omega, R=100 \Omega, f=50 \mathrm{~Hz}$.

3. In the circuit as shown in the figure, the resistor R_{3} has the maximum power $\mathrm{P}_{3}=8 \mathrm{~W}$. Check if this is enough for the correct operation of this system.
$\mathrm{V}=24 \angle 60^{\circ} \mathrm{V}, \mathrm{R}_{1}=4 \Omega, \mathrm{X}_{\mathrm{L} 2}=6 \Omega$,
$R_{3}=8 \Omega, X_{C 3}=4 \Omega$.

4. The circuit as shown in the figure has been protected by a 6 A overcurrent circuit breaker. Check that it will ensure continuous operation of this circuit when supplied with a sine wave voltage of 24 V rms.

$$
\mathrm{R}_{1}=2 \Omega, \mathrm{X}_{\mathrm{L} 2}=2 \Omega, \mathrm{R}_{2}=2 \Omega,
$$

$\mathrm{X}_{\mathrm{C} 3}=4 \Omega, \mathrm{R}_{3}=4 \Omega, \mathrm{X}_{\mathrm{L} 3}=6 \Omega$
27.02.2024

Jarosław Forenc, PhD
i.forenc@pb.edu.pl

