Module name: Electrical Circuits 2

Module ID:
Module type:
Semester:
Instructor:

IS-FEE-10085S
Class
summer 2023/2024
Jarosław Forenc, j.forenc@pb.edu.pl

Class 2 (05.03.2024)

1. Eliminate couplings and calculate the equivalent inductance of the circuits shown in the figures. $L_{1}=0.1 \mathrm{H}, L_{2}=0.2 \mathrm{H}, L_{3}=0.4 \mathrm{H}, \mathrm{M}_{12}=0.1 \mathrm{H}, \mathrm{M}_{23}=0.25 \mathrm{H}, \mathrm{M}_{13}=0.2 \mathrm{H}$.

2. Calculate ammeter readings in the circuits shown in the figures.
$\mathrm{e}_{1}(\mathrm{t})=100 \sqrt{2} \sin \left(100 \mathrm{t}+90^{\circ}\right) \mathrm{V}, \mathrm{R}_{1}=15 \Omega, \mathrm{R}_{2}=30 \Omega, \mathrm{~L}_{2}=0.1 \mathrm{H}, \mathrm{L}_{3}=0.4 \mathrm{H}$,
$R_{3}=15 \Omega, C_{4}=500 \mu \mathrm{~F}, L_{4}=0.3 \mathrm{H}, \mathrm{M}=0.1 \mathrm{H}$.
a)

b)

3. Calculate the currents in all branches of the circuit presented in the figure.
$\underline{E}_{1}=100 \mathrm{~V}, \underline{E}_{3}=500 \mathrm{~V}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=50 \Omega$, $X_{M}=50 \Omega, X_{2}=X_{3}=100 \Omega$.

4. What should be the power of the resistor R_{1} so that it is not damaged during operation in the circuit shown in the figure.
$\underline{U}=10 \mathrm{~V}, \mathrm{R}_{1}=10 \Omega, \mathrm{X}_{\mathrm{L} 1}=25 \Omega$,
$X_{L 2}=40 \Omega, X_{M}=10 \Omega, X_{C 3}=20 \Omega$.
Standard resistor power: $0.125 \mathrm{~W}, 0.25 \mathrm{~W}$, 0.4 W, $0.5 \mathrm{~W}, 0.6 \mathrm{~W}, 0.75 \mathrm{~W}, 1 \mathrm{~W}, 1.2 \mathrm{~W}$,
 $2 \mathrm{~W}, 3 \mathrm{~W}, 5 \mathrm{~W}, 7 \mathrm{~W}, 8 \mathrm{~W}, 9 \mathrm{~W}$.
j.forenc@pb.edu.pl

Module name: Electrical Circuits 2

Module ID:
Module type:
Semester:
Instructor:

IS-FEE-10085S
Class
summer 2023/2024
Jarosław Forenc, j.forenc@pb.edu.pl

Class 2 (05.03.2024)

1. Eliminate couplings and calculate the equivalent inductance of the circuits shown in the figures. $L_{1}=0.1 \mathrm{H}, L_{2}=0.2 \mathrm{H}, L_{3}=0.4 \mathrm{H}, \mathrm{M}_{12}=0.1 \mathrm{H}, \mathrm{M}_{23}=0.25 \mathrm{H}, \mathrm{M}_{13}=0.2 \mathrm{H}$.

2. Calculate ammeter readings in the circuits shown in the figures.
$\mathrm{e}_{1}(\mathrm{t})=100 \sqrt{2} \sin \left(100 \mathrm{t}+90^{\circ}\right) \mathrm{V}, \mathrm{R}_{1}=15 \Omega, \mathrm{R}_{2}=30 \Omega, \mathrm{~L}_{2}=0.1 \mathrm{H}, \mathrm{L}_{3}=0.4 \mathrm{H}$,
$R_{3}=15 \Omega, C_{4}=500 \mu \mathrm{~F}, L_{4}=0.3 \mathrm{H}, \mathrm{M}=0.1 \mathrm{H}$.
a)

b)

3. Calculate the currents in all branches of the circuit presented in the figure.
$\underline{E}_{1}=100 \mathrm{~V}, \underline{E}_{3}=500 \mathrm{~V}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=50 \Omega$, $X_{M}=50 \Omega, X_{2}=X_{3}=100 \Omega$.

4. What should be the power of the resistor R_{1} so that it is not damaged during operation in the circuit shown in the figure.
$\underline{U}=10 \mathrm{~V}, \mathrm{R}_{1}=10 \Omega, \mathrm{X}_{\mathrm{L} 1}=25 \Omega$,
$X_{L 2}=40 \Omega, X_{M}=10 \Omega, X_{C 3}=20 \Omega$.
Standard resistor power: $0.125 \mathrm{~W}, 0.25 \mathrm{~W}$, 0.4 W, $0.5 \mathrm{~W}, 0.6 \mathrm{~W}, 0.75 \mathrm{~W}, 1 \mathrm{~W}, 1.2 \mathrm{~W}$,
 $2 \mathrm{~W}, 3 \mathrm{~W}, 5 \mathrm{~W}, 7 \mathrm{~W}, 8 \mathrm{~W}, 9 \mathrm{~W}$.
j.forenc@pb.edu.pl

Module name: Electrical Circuits 2

Module ID:
Module type:
Semester:
Instructor:

IS-FEE-10085S
Class
summer 2023/2024
Jarosław Forenc, j.forenc@pb.edu.pl

Class 2 (05.03.2024)

1. Eliminate couplings and calculate the equivalent inductance of the circuits shown in the figures. $L_{1}=0.1 \mathrm{H}, L_{2}=0.2 \mathrm{H}, L_{3}=0.4 \mathrm{H}, \mathrm{M}_{12}=0.1 \mathrm{H}, \mathrm{M}_{23}=0.25 \mathrm{H}, \mathrm{M}_{13}=0.2 \mathrm{H}$.

2. Calculate ammeter readings in the circuits shown in the figures.
$\mathrm{e}_{1}(\mathrm{t})=100 \sqrt{2} \sin \left(100 \mathrm{t}+90^{\circ}\right) \mathrm{V}, \mathrm{R}_{1}=15 \Omega, \mathrm{R}_{2}=30 \Omega, \mathrm{~L}_{2}=0.1 \mathrm{H}, \mathrm{L}_{3}=0.4 \mathrm{H}$,
$R_{3}=15 \Omega, C_{4}=500 \mu \mathrm{~F}, L_{4}=0.3 \mathrm{H}, \mathrm{M}=0.1 \mathrm{H}$.
a)

b)

3. Calculate the currents in all branches of the circuit presented in the figure.
$\underline{E}_{1}=100 \mathrm{~V}, \underline{E}_{3}=500 \mathrm{~V}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=50 \Omega$, $X_{M}=50 \Omega, X_{2}=X_{3}=100 \Omega$.

4. What should be the power of the resistor R_{1} so that it is not damaged during operation in the circuit shown in the figure.
$\underline{U}=10 \mathrm{~V}, \mathrm{R}_{1}=10 \Omega, \mathrm{X}_{\mathrm{L} 1}=25 \Omega$,
$X_{L 2}=40 \Omega, X_{M}=10 \Omega, X_{C 3}=20 \Omega$.
Standard resistor power: $0.125 \mathrm{~W}, 0.25 \mathrm{~W}$, 0.4 W, $0.5 \mathrm{~W}, 0.6 \mathrm{~W}, 0.75 \mathrm{~W}, 1 \mathrm{~W}, 1.2 \mathrm{~W}$,
 $2 \mathrm{~W}, 3 \mathrm{~W}, 5 \mathrm{~W}, 7 \mathrm{~W}, 8 \mathrm{~W}, 9 \mathrm{~W}$.
j.forenc@pb.edu.pl

Module name: Electrical Circuits 2

Module ID:
Module type:
Semester:
Instructor:

IS-FEE-10085S
Class
summer 2023/2024
Jarosław Forenc, j.forenc@pb.edu.pl

Class 2 (05.03.2024)

1. Eliminate couplings and calculate the equivalent inductance of the circuits shown in the figures. $L_{1}=0.1 \mathrm{H}, L_{2}=0.2 \mathrm{H}, L_{3}=0.4 \mathrm{H}, \mathrm{M}_{12}=0.1 \mathrm{H}, \mathrm{M}_{23}=0.25 \mathrm{H}, \mathrm{M}_{13}=0.2 \mathrm{H}$.

2. Calculate ammeter readings in the circuits shown in the figures.
$\mathrm{e}_{1}(\mathrm{t})=100 \sqrt{2} \sin \left(100 \mathrm{t}+90^{\circ}\right) \mathrm{V}, \mathrm{R}_{1}=15 \Omega, \mathrm{R}_{2}=30 \Omega, \mathrm{~L}_{2}=0.1 \mathrm{H}, \mathrm{L}_{3}=0.4 \mathrm{H}$,
$R_{3}=15 \Omega, C_{4}=500 \mu \mathrm{~F}, L_{4}=0.3 \mathrm{H}, \mathrm{M}=0.1 \mathrm{H}$.
a)

b)

3. Calculate the currents in all branches of the circuit presented in the figure.
$\underline{E}_{1}=100 \mathrm{~V}, \underline{E}_{3}=500 \mathrm{~V}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=50 \Omega$, $X_{M}=50 \Omega, X_{2}=X_{3}=100 \Omega$.

4. What should be the power of the resistor R_{1} so that it is not damaged during operation in the circuit shown in the figure.
$\underline{U}=10 \mathrm{~V}, \mathrm{R}_{1}=10 \Omega, \mathrm{X}_{\mathrm{L} 1}=25 \Omega$,
$X_{L 2}=40 \Omega, X_{M}=10 \Omega, X_{C 3}=20 \Omega$.
Standard resistor power: $0.125 \mathrm{~W}, 0.25 \mathrm{~W}$, 0.4 W, $0.5 \mathrm{~W}, 0.6 \mathrm{~W}, 0.75 \mathrm{~W}, 1 \mathrm{~W}, 1.2 \mathrm{~W}$,
 $2 \mathrm{~W}, 3 \mathrm{~W}, 5 \mathrm{~W}, 7 \mathrm{~W}, 8 \mathrm{~W}, 9 \mathrm{~W}$.
j.forenc@pb.edu.pl

Module name: Electrical Circuits 2

Module ID:
Module type:
Semester:
Instructor:

IS-FEE-10085S
Class
summer 2023/2024
Jarosław Forenc, j.forenc@pb.edu.pl

Class 2 (05.03.2024)

1. Eliminate couplings and calculate the equivalent inductance of the circuits shown in the figures. $L_{1}=0.1 \mathrm{H}, L_{2}=0.2 \mathrm{H}, L_{3}=0.4 \mathrm{H}, \mathrm{M}_{12}=0.1 \mathrm{H}, \mathrm{M}_{23}=0.25 \mathrm{H}, \mathrm{M}_{13}=0.2 \mathrm{H}$.

2. Calculate ammeter readings in the circuits shown in the figures.
$\mathrm{e}_{1}(\mathrm{t})=100 \sqrt{2} \sin \left(100 \mathrm{t}+90^{\circ}\right) \mathrm{V}, \mathrm{R}_{1}=15 \Omega, \mathrm{R}_{2}=30 \Omega, \mathrm{~L}_{2}=0.1 \mathrm{H}, \mathrm{L}_{3}=0.4 \mathrm{H}$,
$R_{3}=15 \Omega, C_{4}=500 \mu \mathrm{~F}, L_{4}=0.3 \mathrm{H}, \mathrm{M}=0.1 \mathrm{H}$.
a)

b)

3. Calculate the currents in all branches of the circuit presented in the figure.
$\underline{E}_{1}=100 \mathrm{~V}, \underline{E}_{3}=500 \mathrm{~V}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=50 \Omega$, $X_{M}=50 \Omega, X_{2}=X_{3}=100 \Omega$.

4. What should be the power of the resistor R_{1} so that it is not damaged during operation in the circuit shown in the figure.
$\underline{U}=10 \mathrm{~V}, \mathrm{R}_{1}=10 \Omega, \mathrm{X}_{\mathrm{L} 1}=25 \Omega$,
$X_{L 2}=40 \Omega, X_{M}=10 \Omega, X_{C 3}=20 \Omega$.
Standard resistor power: $0.125 \mathrm{~W}, 0.25 \mathrm{~W}$, 0.4 W, $0.5 \mathrm{~W}, 0.6 \mathrm{~W}, 0.75 \mathrm{~W}, 1 \mathrm{~W}, 1.2 \mathrm{~W}$,
 $2 \mathrm{~W}, 3 \mathrm{~W}, 5 \mathrm{~W}, 7 \mathrm{~W}, 8 \mathrm{~W}, 9 \mathrm{~W}$.
j.forenc@pb.edu.pl

Module name: Electrical Circuits 2

Module ID:
Module type:
Semester:
Instructor:

IS-FEE-10085S
Class
summer 2023/2024
Jarosław Forenc, j.forenc@pb.edu.pl

Class 2 (05.03.2024)

1. Eliminate couplings and calculate the equivalent inductance of the circuits shown in the figures. $L_{1}=0.1 \mathrm{H}, L_{2}=0.2 \mathrm{H}, L_{3}=0.4 \mathrm{H}, \mathrm{M}_{12}=0.1 \mathrm{H}, \mathrm{M}_{23}=0.25 \mathrm{H}, \mathrm{M}_{13}=0.2 \mathrm{H}$.

2. Calculate ammeter readings in the circuits shown in the figures.
$\mathrm{e}_{1}(\mathrm{t})=100 \sqrt{2} \sin \left(100 \mathrm{t}+90^{\circ}\right) \mathrm{V}, \mathrm{R}_{1}=15 \Omega, \mathrm{R}_{2}=30 \Omega, \mathrm{~L}_{2}=0.1 \mathrm{H}, \mathrm{L}_{3}=0.4 \mathrm{H}$,
$R_{3}=15 \Omega, C_{4}=500 \mu \mathrm{~F}, L_{4}=0.3 \mathrm{H}, \mathrm{M}=0.1 \mathrm{H}$.
a)

b)

3. Calculate the currents in all branches of the circuit presented in the figure.
$\underline{E}_{1}=100 \mathrm{~V}, \underline{E}_{3}=500 \mathrm{~V}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=50 \Omega$, $X_{M}=50 \Omega, X_{2}=X_{3}=100 \Omega$.

4. What should be the power of the resistor R_{1} so that it is not damaged during operation in the circuit shown in the figure.
$\underline{U}=10 \mathrm{~V}, \mathrm{R}_{1}=10 \Omega, \mathrm{X}_{\mathrm{L} 1}=25 \Omega$,
$X_{L 2}=40 \Omega, X_{M}=10 \Omega, X_{C 3}=20 \Omega$.
Standard resistor power: $0.125 \mathrm{~W}, 0.25 \mathrm{~W}$, 0.4 W, $0.5 \mathrm{~W}, 0.6 \mathrm{~W}, 0.75 \mathrm{~W}, 1 \mathrm{~W}, 1.2 \mathrm{~W}$,
 $2 \mathrm{~W}, 3 \mathrm{~W}, 5 \mathrm{~W}, 7 \mathrm{~W}, 8 \mathrm{~W}, 9 \mathrm{~W}$.
j.forenc@pb.edu.pl

Module name: Electrical Circuits 2

Module ID:
Module type:
Semester:
Instructor:

IS-FEE-10085S
Class
summer 2023/2024
Jarosław Forenc, j.forenc@pb.edu.pl

Class 2 (05.03.2024)

1. Eliminate couplings and calculate the equivalent inductance of the circuits shown in the figures. $L_{1}=0.1 \mathrm{H}, L_{2}=0.2 \mathrm{H}, L_{3}=0.4 \mathrm{H}, \mathrm{M}_{12}=0.1 \mathrm{H}, \mathrm{M}_{23}=0.25 \mathrm{H}, \mathrm{M}_{13}=0.2 \mathrm{H}$.

2. Calculate ammeter readings in the circuits shown in the figures.
$\mathrm{e}_{1}(\mathrm{t})=100 \sqrt{2} \sin \left(100 \mathrm{t}+90^{\circ}\right) \mathrm{V}, \mathrm{R}_{1}=15 \Omega, \mathrm{R}_{2}=30 \Omega, \mathrm{~L}_{2}=0.1 \mathrm{H}, \mathrm{L}_{3}=0.4 \mathrm{H}$,
$R_{3}=15 \Omega, C_{4}=500 \mu \mathrm{~F}, L_{4}=0.3 \mathrm{H}, \mathrm{M}=0.1 \mathrm{H}$.
a)

b)

3. Calculate the currents in all branches of the circuit presented in the figure.
$\underline{E}_{1}=100 \mathrm{~V}, \underline{E}_{3}=500 \mathrm{~V}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=50 \Omega$, $X_{M}=50 \Omega, X_{2}=X_{3}=100 \Omega$.

4. What should be the power of the resistor R_{1} so that it is not damaged during operation in the circuit shown in the figure.
$\underline{U}=10 \mathrm{~V}, \mathrm{R}_{1}=10 \Omega, \mathrm{X}_{\mathrm{L} 1}=25 \Omega$,
$X_{L 2}=40 \Omega, X_{M}=10 \Omega, X_{C 3}=20 \Omega$.
Standard resistor power: $0.125 \mathrm{~W}, 0.25 \mathrm{~W}$, 0.4 W, $0.5 \mathrm{~W}, 0.6 \mathrm{~W}, 0.75 \mathrm{~W}, 1 \mathrm{~W}, 1.2 \mathrm{~W}$,
 $2 \mathrm{~W}, 3 \mathrm{~W}, 5 \mathrm{~W}, 7 \mathrm{~W}, 8 \mathrm{~W}, 9 \mathrm{~W}$.
j.forenc@pb.edu.pl
