ELECTRICAL CIRCUITS 2 - CLASS 6 (16.04.2024)

Three-phase circuits

- Generator voltages (positive phase sequence):
$e_{A}(t)=E_{m} \sin (\omega t)$
$\underline{E}_{A}=E e^{j 0^{0}}$
$e_{B}(t)=E_{m} \sin \left(\omega t-120^{\circ}\right)$
$\underline{E}_{B}=E e^{-j 120^{\circ}}$
$\underline{E}_{A}+\underline{E}_{B}+\underline{E}_{C}=0$
E_{m} - the peak (maximum) value
$e_{C}(t)=E_{m} \sin \left(\omega t+120^{\circ}\right)$
$\underline{E}_{C}=E e^{j 20^{\circ}}$
\underline{E} - the complex value (phasor) E - the rms (effective) value

Balanced Wye-Wye (Y-Y) connection, three-wire system

- Symbols in the circuit:
$\underline{E}_{A}, \underline{E}_{B}, \underline{E}_{C} \quad$ - phase voltages of the generator
$\underline{U}_{A}, \underline{U}_{B}, \underline{U}_{C} \quad$ - phase voltages of the load
$\underline{U}_{A B}, \underline{U}_{B C}, \underline{U}_{C A}$ - line voltages (line-to-line)
$\underline{U}_{N} \quad$ - voltage between N and N^{\prime} points
$\underline{I}_{A}, \underline{I}_{B}, \underline{I}_{C}$ - the line currents
$\underline{Z}_{A}, \underline{Z}_{B}, \underline{Z}_{C}$ - the load impedances
$N \quad$ - neutral point of the source
$N^{\prime} \quad$ - neutral point of the load
- Balanced load:
$\underline{Z}_{A}=\underline{Z}_{B}=\underline{Z}_{C}=\underline{Z}$
- \underline{U}_{N} voltage:
$\underline{U}_{N}=\frac{\underline{E}_{A} \cdot \underline{Y}_{A}+\underline{E}_{B} \cdot \underline{Y}_{B}+\underline{E}_{C} \cdot \underline{Y}_{C}}{\underline{Y}_{A}+\underline{Y}_{B}+\underline{Y}_{C}} \quad$ where: $\quad \underline{Y}_{A}=\frac{1}{\underline{Z}_{A}}, \quad \underline{Y}_{B}=\frac{1}{\underline{Z}_{B}}, \quad \underline{Y}_{C}=\frac{1}{\underline{Z}_{C}}$
- Phase voltages of the load:
$\underline{U}_{A}=\underline{E}_{A}, \quad \underline{U}_{B}=\underline{E}_{B}, \quad \underline{U}_{C}=\underline{E}_{C} \quad$ because in the system with the balanced load: $\underline{U}_{N}=0$
- The line currents:
$\underline{I}_{A}=\frac{\underline{E}_{A}}{\underline{Z}_{A}}, \quad \underline{I}_{B}=\frac{\underline{E}_{B}}{\underline{Z}_{B}}, \quad \underline{I}_{C}=\frac{\underline{E}_{C}}{\underline{Z}_{C}}$
the complex values (phasors): $\underline{I}_{A}+\underline{I}_{B}+\underline{I}_{C}=0$
the rms (effective) values: $\quad I_{A}=I_{B}=I_{C}$
- The line voltages (line-to-line):

$$
\begin{aligned}
& \underline{U}_{A B}=\underline{E}_{A}-\underline{E}_{B}=\sqrt{3} E e^{j 30^{\circ}} \\
& \underline{U}_{B C}=\underline{E}_{B}-\underline{E}_{C}=\sqrt{3} E e^{-j 90^{\circ}} \\
& \underline{U}_{C A}=\underline{E}_{C}-\underline{E}_{A}=\sqrt{3} E e^{j 150^{\circ}}
\end{aligned}
$$

the complex values (phasors):
the rms (effective) values:
$\underline{U}_{A B}+\underline{U}_{B C}+\underline{U}_{C A}=0$
$U_{A B}=U_{B C}=U_{C A}$

- Phasor diagram of voltages:

- Active, reactive and apparent power:

$$
\begin{aligned}
& P=U_{A} \cdot I_{A} \cdot \cos \varphi_{A}+U_{B} \cdot I_{B} \cdot \cos \varphi_{B}+U_{C} \cdot I_{C} \cdot \cos \varphi_{C} \\
& Q=U_{A} \cdot I_{A} \cdot \sin \varphi_{A}+U_{B} \cdot I_{B} \cdot \sin \varphi_{B}+U_{C} \cdot I_{C} \cdot \sin \varphi_{C} \\
& S=U_{A} \cdot I_{A}+U_{B} \cdot I_{B}+U_{C} \cdot I_{C}
\end{aligned}
$$

Complex power:

$$
\begin{aligned}
& \underline{S}=\underline{U}_{A} \cdot \underline{I}_{A}^{*}+\underline{U}_{B} \cdot \underline{I}_{B}^{*}+\underline{U}_{C} \cdot \underline{I}_{C}^{*} \\
& \underline{S}=P+j Q \\
& P=\operatorname{Re}\{\underline{S}\}, \quad Q=\operatorname{Im}\{\underline{S}\}, \quad S=\|\underline{S}\|
\end{aligned}
$$

in the case of balanced load:

$$
U_{A}=U_{B}=U_{C}=U_{p h}, \quad I_{A}=I_{B}=I_{C}=I_{p h}, \quad \cos \varphi_{A}=\cos \varphi_{B}=\cos \varphi_{C}=\cos \varphi_{p h}
$$

then:

$$
P=3 \cdot U_{p h} \cdot I_{p h} \cdot \cos \varphi_{p h}, \quad Q=3 \cdot U_{p h} \cdot I_{p h} \cdot \sin \varphi_{p h}, \quad S=3 \cdot U_{p h} \cdot I_{p h}
$$

Note: all of the above relationships are also valid for four-wire balanced system with impedance $\underline{Z}_{N}=0$ (system on the left) or with impedance $\underline{Z}_{N} \neq 0$ (system on the right).

$$
\underline{U}_{N}=0, \quad \underline{I}_{N}=0
$$

$\underline{U}_{N}=0, \quad \underline{I}_{N}=0$

ELECTRICAL CIRCUITS 2 - CLASS NO. 6 (16.04.2024)

In a 3-phose balanced by system, the source voltage is Ephose $=230 \mathrm{~V}$ rms. The impedance per phase is $\underline{2}=(8+j 6) \Omega$. Check whether an overcurrent circuit breaker with a rated current of 10 A is sufficient to protect this circuit. Also, find the active power of the load and the readings of the wattmeters.

$$
\begin{gathered}
E_{p h}=230 \mathrm{~V} \mathrm{~ms} \\
E_{A}=230 e^{j 0^{\circ}}=230 \mathrm{~V} \\
\underline{E}_{B}=230 e^{-j 120^{\circ}}=(-115-j 199.19) \mathrm{V} \\
\underline{E}_{C}=230 e^{j\left(20^{\circ}\right.}=(-115+j 199.19) \mathrm{V} \\
\underline{I}_{A}=\frac{E_{A}}{\underline{2}}=\frac{230}{8+j 6}=(18.4-j 13.8) \mathrm{A}=23 e^{-j 36.877^{\circ}} \mathrm{A} \\
\underline{I}_{B}=\frac{E_{B}}{\underline{2}}=\frac{-115-j 189.19}{8+j 6}=(-21.15-j 9.03) \mathrm{A}=23 e^{-j 56.87} \mathrm{~A}
\end{gathered}
$$

Method 1

$$
\left|I_{A}\right|=23 \mathrm{~A}>10 \mathrm{~A} \quad I_{C}=\frac{E C}{\underline{E}}=\frac{-115+j 199.19}{8+j 6}=(2.75+j 22.83) \mathrm{A}=23 e^{j 83.13^{\circ}} \mathrm{A}
$$

$p=3 \cdot U_{p h} \cdot I_{p h} \cdot \cos \varphi_{\rho h}$

$$
\begin{aligned}
& U_{\text {ph }}=230 \mathrm{~V} \quad I_{p h}=23 \mathrm{~A} \quad \varphi_{p h}=\varphi_{u}-\varphi_{i}=0^{\circ}-\left(-36.87^{\circ}\right)=36.87^{\circ} \\
& P_{\text {load }}=3 \cdot 230 \cdot 23 \cdot \cos \left(36.87^{\circ}\right)=12695.98 \mathrm{~W}
\end{aligned}
$$

Method 2

$$
\begin{aligned}
& S=E_{A} \cdot I_{A}^{*}+\underline{E}_{B} \cdot I_{B}^{*}+E_{C} \cdot I_{C}^{*}=230 \cdot(18.4+j 13.8)+(-115-j 199.18) \cdot(-21.15+j 9.03)+(-115+j 189.19) \cdot(2.75-j 22.83) \\
& P_{\text {load }}=12696 \mathrm{~W}=4232+j 3174+4232+j 3174+4232+j 3174=\underbrace{12636}_{P_{\text {load }}}+j 9522 V A
\end{aligned}
$$

Method 3

$$
\begin{aligned}
& \underline{U}_{A C}=\underline{E}_{A}-\underline{E}_{C}=230-(-115+j \| 19.19)=(345-j 199.19) \mathrm{V} \\
& \underline{U}_{B C}=\underline{E}_{B}-E_{C}=-115-j 199.19-(-115+j 199.19)=-j 398.37 \mathrm{~V} \\
& \underline{S}_{1}=\underline{U}_{A C} \cdot \underline{I}_{A}^{*}=(345-j 199.19) \cdot(18.4+j 13.8)=\underbrace{9096.76}_{P_{W 1}}+j 1095.98) \mathrm{VA} \rightarrow P_{W 1}=9096.76 \mathrm{~W} \\
& \underline{S}_{2}=\underline{U}_{B C} \cdot I_{B}^{*}=(-j 398.37) \cdot(-21.15+j 9.03)=\underbrace{(3599.23}_{P_{W 2}}+j 8426.02) \mathrm{VA} \rightarrow P_{W 2}=3599.23 \mathrm{~W} \\
& P_{\text {wad }}=P_{W 1}+P_{W 2} \quad P_{W 1}+P_{W 2}=9096.76+3598.23=12695.99 \mathrm{~W}
\end{aligned}
$$

PROBLEM \#2
In a 3-phase balanced y-y system, the source voltage is Ephase $=230 \mathrm{Vms}$. The impedance per phase is $Z_{y}=\left(9+g_{j}\right)$ dr and the line impedance per phase is $(0.5+j 0.4) u$. What should be the rated current of the overcurient circuit breakers protecting the circuit? Standard rated currents are: $6 \mathrm{~A}, 10 \mathrm{~A}, 16 \mathrm{~A}, 20 \mathrm{~A}, 25 \mathrm{~A}, 32 \mathrm{~A}, 40 \mathrm{~A}, 50 \mathrm{~A}, 63 \mathrm{~A}, 80 \mathrm{~A}, 125 \mathrm{~A}$. Calculate the active power losses in the power line. Also, calculate the percentage voltage drop across the load compared to the rated voltage.

$$
\begin{aligned}
& E_{A}=230 e^{j 0^{\circ}}=230 \mathrm{~V} \\
& \underline{E}_{6}=230 e^{-j 1200}=(-115-j 199.19) \mathrm{V} \\
& E_{c}=230 e^{j 120^{\circ}}=(-115+j 189.18) \mathrm{V} \\
& I_{A}=\frac{E_{A}}{Z_{x}+\sum_{\text {lIne }}}=\frac{230}{9+j \rho+0.5+j 0.4}=\frac{230}{9.5+j \Omega . h}= \\
& =(12.23-j 12.10) A=17.21 e^{-j 44.7^{\circ}} \mathrm{A} \\
& \left|I_{A}\right|=\left|I_{B}\right|=||c|=17.21 \mathrm{~A}
\end{aligned}
$$

The rated current of the overcurrent circuit breaker should be: 20 A
The active pour losses in the pole line:

$$
\begin{aligned}
& Z_{\text {line }}=R_{\text {line }}+j X_{\text {line }}=(0.5+j 0.4) \Omega \\
& P_{\text {losses }}=3 \cdot R_{\text {line }} \cdot I_{\text {line }}^{2}=3 \cdot 0.5 \cdot 17.21^{2}=3 \cdot 148.09=444.27 \mathrm{~W}
\end{aligned}
$$

The percentage voltage drop:

$$
\begin{aligned}
& \text { The percenio.ge } \\
& U_{A}=I_{A} \cdot 2 y=(12.23-j 12.10) \cdot(9+j 9)=(219.04+j 1.16) \mathrm{V}=219.04 \mathrm{e}^{j 0.3^{\circ}} \mathrm{V} \\
& \left|U_{A}\right|=219.04 \mathrm{~V} \quad\left|E_{A}\right|=230 \mathrm{~V} \\
& \Delta U_{\alpha_{O}}=\frac{\left|E_{A}\right|-\left|u_{A}\right|}{\left|E_{A}\right|} \cdot 100 \%=\frac{230-218.04}{230} \cdot 100 \%=4.765 \%
\end{aligned}
$$

PROBLEM \#3
In the 3-phase balanced Y-y system, the load voltage is $U_{\text {load }}=400 \angle-20^{\circ} \mathrm{V} \mathrm{ms}$, the line impedance is $(2.5+j 1.2) \Omega$, and the source voltage is Ephase $=440 \mathrm{~V} \mathrm{~ms}$. Find the load impedance, its power, and the value of supplying current.

$$
\begin{aligned}
& I=\frac{E_{p h}}{Z_{\text {line }}+Z_{\text {load }}} \quad I=\frac{U_{\text {load }}}{Z_{\text {load }}} \\
& E_{\text {ph }} \cdot \underline{Z}_{\text {load }}=U_{\text {load }}\left(Z_{\text {line }}+\underline{Z}_{\text {load }}\right) \\
& Z_{\text {load }}\left(E_{p h}-U_{\text {loos }}\right)=Z_{\text {line }} \underline{U}_{\text {blood }} \\
& Z_{\text {load }}=Z_{\text {line }} \frac{U_{\text {load }}}{E_{\text {pho }}-\underline{U}_{\text {led }}}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{u}_{\text {load }}=400 e^{-j 20^{\circ}}=(375.88-j 136.81) \mathrm{V} \\
& \underline{E}_{\text {ph }}=440 e^{j 0^{\circ}}=440 \mathrm{~V} \quad \underline{I}_{\text {load }}=(2.5+j 1.2) \cdot \frac{375.88-j 136.81}{440-375.88+j 136.81}=(3.9541-j 6.3091) \Omega \\
& \underline{Z}_{\text {line }}=(2.5+j 1.2) \Omega \quad \\
& I_{\text {load }}=\frac{\underline{u}_{\text {load }}}{I_{\text {load }}}=\frac{400 e^{-j 200}}{3.7541-j 6.3081}=(42.1947+j 34.4698) \mathrm{A}=54.48 e^{j 39.2^{\circ}} \mathrm{A} \\
& \text { load }=3 \cdot \operatorname{Re}\left\{S_{\text {load }}\right\}=3 \cdot \operatorname{Re}\left\{\underline{U}_{\text {load }} \cdot I_{1000}^{*}\right\}=3 \cdot \operatorname{Re}\{(375.88-j 136.81)(42.1949-j 34.4698)\}= \\
& =3 \cdot \operatorname{Re}\{11144-j 18729\}=3 \cdot 11144=33433 \mathrm{~W}
\end{aligned}
$$

PROBLEM \#4
The line-to-line voltage of a balanced 3 -phase distribution line is $U_{L L}=380 \mathrm{~V}$ rms. The load impedance per phase is $\underline{Z}_{l}=(30+j 20) \Omega$. Calculate the line currents and the active power of the load for the following configurations of load impedance:
a) a wye-connected system,
6) a delta-connected system
a)

b)

$$
\begin{aligned}
& \underline{U}_{p h}=\underline{U}_{u}=380 \mathrm{~V} \\
& \underline{I}_{p h}=\frac{U_{p h}}{\underline{U}}=\frac{380}{30+j 20}=(8.7692-j 5.8462) \mathrm{A}=10.5393 \mathrm{e}^{-j 33.7} \\
& \begin{aligned}
S & =3 U_{p h} \cdot I_{p h}^{*}=3 \cdot 380 \cdot(8.7692+j 5.8462)= \\
& =9996.9+j 6664.6 \mathrm{VA} \\
P & =\operatorname{Re}[\underline{S}=9996.9 \mathrm{~W}
\end{aligned} \\
& I_{A}=I_{B}=I_{c}=\sqrt{3} \cdot I_{p h}=18.25 \mathrm{~A}
\end{aligned}
$$

