Module name: Electrical Circuits 2

Module ID:
Module type:
Semester:
Instructor:

IS-FEE-10085S
Class
summer 2023/2024
Jarosław Forenc, j.forenc@pb.edu.pl

Class 6 (16.04.2024)

1. In a 3-phase balanced $Y-Y$ system, the source voltage is $E_{\text {phase }}=230 \mathrm{~V}$ rms.

The impedance per phase is $\underline{Z}=(8+j 6) \Omega$. Check whether an overcurrent circuit breaker with a rated current of 10 A is sufficient to protect this circuit. Also, find the active power of the load and the readings of the wattmeters.

2. In a 3-phase balanced $Y-Y$ system, the source voltage is $E_{\text {phase }}=230 \mathrm{~V}$ rms.

The impedance per phase is $\underline{Z}_{Y}=(9+j 9) \Omega$ and the line impedance per phase is $(0.5+j 0.4) \Omega$. What should be the rated current of the overcurrent circuit breakers protecting this circuit? Standard rated currents are: $6 \mathrm{~A}, 10 \mathrm{~A}, 16 \mathrm{~A}, 20 \mathrm{~A}, 25 \mathrm{~A}, 32 \mathrm{~A}$, $40 \mathrm{~A}, 50 \mathrm{~A}, 63 \mathrm{~A}, 80 \mathrm{~A}, 125 \mathrm{~A}$. Calculate the active power losses in the power line. Also, calculate the percentage voltage drop across the load compared to the rated voltage.

3. In the 3-phase balanced $Y-Y$ system, the load voltage is $U_{\text {load }}=400 \angle-20^{\circ} \mathrm{V} \mathrm{rms}$, the line impedance is $(2.5+j 1.2) \Omega$, and the source voltage is $E_{\text {phase }}=440 \mathrm{~V} \mathrm{rms}$. Find the load impedance, its power, and the value of supplying current.

4. The line-to-line voltage of a balanced 3-phase distribution line is $U_{L L}=380 \mathrm{~V}$ rms. The load impedance per phase is $\underline{Z}_{\mathrm{L}}=(30+j 20) \Omega$. Calculate the line currents and the active power of the load for the following configurations of load impedance:
a) a wye-connected system, b) a delta-connected system.
a)

b)

16.04.2024

Jarosław Forenc, PhD
j.forenc@pb.edu.pl

