ELECTRICAL CIRCUITS 2 - CLASS 7 (23.04.2024)

Balanced Delta-Delta ($\Delta-\Delta$) connection

- Symbols in the circuit:
$\underline{E}_{A}, \underline{E}_{B}, \underline{E}_{C} \quad$ - phase voltages of the generator
$\underline{I}_{A}, \underline{I}_{B}, \underline{I}_{C} \quad$ - the line currents
$\underline{U}_{A B}, \underline{U}_{B C}, \underline{U}_{C A}$ - phase voltages of the load
$\underline{I}_{A B}, \underline{I}_{B C}, \underline{I}_{C A}$ - the phase currents
$\underline{Z}_{A B}, \underline{Z}_{B C}, \underline{Z}_{C A}$ - the load impedances
- Balanced load:
$\underline{Z}_{A}=\underline{Z}_{B}=\underline{Z}_{C}=\underline{Z}$
- Phase voltages of the load are equal to phase voltages of the generator:
$\underline{U}_{A B}=\underline{E}_{A}, \quad \underline{U}_{B C}=\underline{E}_{B}, \quad \underline{U}_{C A}=\underline{E}_{C}$
the complex values (phasors): $\underline{U}_{A B}+\underline{U}_{B C}+\underline{U}_{C A}=0$
the rms (effective) values: $\quad U_{A B}=U_{B C}=U_{C A}$
- The phase currents:
$\underline{I}_{A B}=\frac{\underline{U}_{A B}}{\underline{Z}_{A B}}, \quad \underline{I}_{B C}=\frac{\underline{U}_{B C}}{\underline{Z}_{B C}}, \quad \underline{I}_{C A}=\frac{\underline{U}_{C A}}{\underline{Z}_{C A}}$
the complex values (phasors): $\underline{I}_{A B}+\underline{I}_{B C}+\underline{I}_{C A}=0$
the rms (effective) values: $\quad I_{A B}=I_{B C}=I_{C A}$
- The line currents:
$\underline{I}_{A}=\underline{I}_{A B}-\underline{I}_{C A}$
$\underline{I}_{B}=\underline{I}_{B C}-\underline{I}_{A B}$
$\underline{I}_{C}=\underline{I}_{C A}-\underline{I}_{B C}$
- Phasor diagram of currents:

- Active, reactive and apparent power:

$$
\begin{array}{ll}
P=U_{A B} \cdot I_{A B} \cdot \cos \varphi_{A B}+U_{B C} \cdot I_{B C} \cdot \cos \varphi_{B C}+U_{C A} \cdot I_{C A} \cdot \cos \varphi_{C A} & \underline{S}=\underline{U}_{A B} \cdot \underline{I}_{A B}^{*}+\underline{U}_{B C} \cdot \underline{I}_{B C}^{*}+\underline{U}_{C A} \cdot \underline{I}_{C A}^{*} \\
Q=U_{A B} \cdot I_{A B} \cdot \sin \varphi_{A B}+U_{B C} \cdot I_{B C} \cdot \sin \varphi_{B C}+U_{C A} \cdot I_{C A} \cdot \sin \varphi_{C A} & \underline{S}=P+j Q \\
S=U_{A B} \cdot I_{A B}+U_{B C} \cdot I_{B C}+U_{C A} \cdot I_{C A} & P=\operatorname{Re}\{\underline{S}\}, \quad Q=\operatorname{Im}\{\underline{S}\}, \quad S=\|\underline{S}\|
\end{array}
$$

in the case of balanced load:
$U_{A B}=U_{B C}=U_{C A}=U_{p h}, \quad I_{A B}=I_{B C}=I_{C A}=I_{p h}, \quad \cos \varphi_{A B}=\cos \varphi_{B C}=\cos \varphi_{C A}=\cos \varphi_{p h}$ then:

$$
P=3 \cdot U_{p h} \cdot I_{p h} \cdot \cos \varphi_{p h}, \quad Q=3 \cdot U_{p h} \cdot I_{p h} \cdot \sin \varphi_{p h}, \quad S=3 \cdot U_{p h} \cdot I_{p h}
$$

ELECTRICAL CIRCUITS 2 - CLASS NO. 7 (23.04.2024)

PROBLEM \#1
In a 3-phase balanced $\Delta-\Delta$ system the source voltage $E_{p h}=230 \mathrm{~V} \mathrm{~ms}$. The impedance per phase is $z=(8+j 6)$ d. Find the line currents, active power of the load and wottmeters readings.

$$
\begin{aligned}
& E_{A}=230 e^{j 0^{\circ}} \mathrm{V}=230 \mathrm{~V} \\
& \underline{E}_{B}=230 e^{-j 220^{\circ}} \mathrm{V}=-115-j 199.19 \mathrm{~V} \\
& \underline{E C}_{C}=230 \mathrm{e}^{j 2120^{\circ}} \mathrm{V}=-115+j 199.19 \mathrm{~V} \\
& \underline{U}_{A B}=E_{A} \\
& \underline{U}_{B C}=\underline{E}_{B} \\
& \underline{U}_{C A}=\underline{E}
\end{aligned}
$$

Note: for IB current, the calculated angle is positive. After changing the angle to negative ($173.13^{\circ}-360^{\circ}=-186.87$), we can see that the angle between

$$
\begin{aligned}
& I_{A B}=\frac{E_{A}}{2}=\frac{230}{8+j 6}=(18.4-j 13.8) \mathrm{A}=23 e^{-j 36.87^{\circ}} \mathrm{A} \\
& I_{B C}=\frac{E_{B}}{2}=\frac{-115-j 1199.19}{8+j 6}=(-21.15-j 9.03) A=23 e^{-j 156.87^{\circ}} \mathrm{A} \\
& I_{C A}=\frac{E_{C}}{2}=\frac{-115+j 199.19}{8+j 6}=(2.75+j 22.83) \mathrm{A}=23 e^{j 83.13} \mathrm{~A}
\end{aligned}
$$

$$
I_{A}=I_{A B}-I_{C A}=18.4-j 13.8-2.75-j 22.83=(15.65-j 36.63) \mathrm{A}=39.84 e^{-j 66.87^{\circ}} \mathrm{A}
$$

$$
I_{B}=I_{B C}-I_{A B}=-21.15-j 9.03-18.4+j 13.8=(-39.55+j 4.77) \mathrm{A}=39.84 e^{j 173.13^{\circ}} \mathrm{A}=39.84 \mathrm{e}^{-j 186.870} \mathrm{~A}
$$

$$
I_{C}=I_{C A}-I_{B C}=2.75+j 22.83+21.15+j 9.03=(23.9+j 31.87) \mathrm{A}=39.84 \mathrm{e}^{j 53.13^{\circ}} \mathrm{A}=39.84 e^{-j 306.87^{\circ}} \mathrm{A}
$$

$$
S_{1}=\left(-E_{C}\right) \cdot I_{A}^{A}=(115-j 189.19) \cdot(15.65+j 36.63)=(\underbrace{(0966.76}_{\rho_{W 1}}+j 1095.98) \mathrm{VA} \rightarrow P_{W 11}=9096.76 \mathrm{~W}
$$

$$
\underline{S}_{2}=E_{B} \cdot I_{B}^{*}=(-115-j 199.19)(-39.55-j 4.77)=\underbrace{(3599.23}_{\rho_{W 2}}+j 8426.02) \mathrm{VA} \rightarrow P_{W 2}=3599.23 \mathrm{~W}
$$

$$
\begin{aligned}
& S=E_{A} \cdot I_{A B}^{*}+E_{B} \cdot I_{B C}^{*}+E_{C} \cdot I_{C A}^{*}=230 \cdot(18.4-j 13.8)+(-115-j 199.19)(-21.15-j 99.03)+(-115+j 199.19)(2.75+j 22.83 \\
& P_{\text {load }}=P_{W 1}+P_{\omega / 2} \quad=4232+j 3174+4232+j 3174+4232+j 3174=(126.96+j 9522) \mathrm{VA} \\
& P_{\text {load }}=12696 \mathrm{~L} \quad P_{W 1}+P_{W 2}=9096.76+3599.23=12695.99 \mathrm{~W}
\end{aligned}
$$

PROBLEM \#2

The three-phase electric heater consists of three heating coils y-connected. The nominal power of the heater is $P_{n}=3 \mathrm{~kL}$, and the nominal voltage $U_{n}=230 \mathrm{~V} \mathrm{~ms}$. The heater has been damaged. After its repair the length of the first coil decreased by 5% and the length of the second coil by 10%.
a) calculate the line currents before repairing the heater,

$I_{1}=\frac{E_{1}}{R}=\frac{230}{51.3}=4.3478=4.3478 e^{j 00} \mathrm{~A}$
$I_{2}=\frac{E_{2}}{R}=\frac{-115-j 119.19}{52.3}=(-2.1739-j 3.7653)=4.3478 e^{-j 20^{\circ}} \mathrm{A}$

$$
\underline{I}_{1}+\underline{I}_{2}+\underline{I}_{3}=0
$$

$$
I_{3}=\frac{E_{3}}{R}=\frac{-115+j 119.18}{52.3}=(-2.1739+j 3.7653)=4.3478 e^{+j 120^{\circ}} \mathrm{A}
$$

6) calculate line currents, the current in the neutral line and the power of the repaired heater

$I_{N}=I_{1}+I_{2}+I_{3}$
$P_{n}=\frac{u_{n}^{2}}{R_{1}}+\frac{U_{n}^{2}}{R_{2}}+\frac{u_{n}^{2}}{R_{3}}$
$P_{n}=\operatorname{Re}\{\underline{S}\}=\operatorname{Re}\left\{\underline{E}_{1} \cdot I_{1}^{*}+\underline{E}_{2} \cdot \underline{I}_{2}^{*}+\underline{E}_{3} \underline{I}_{3}^{*}\right\}$
