Unbalanced Wye-Wye (Y-Y) connection

- Generator voltages (positive phase sequence)

$e_{A}(t)=E_{m} \sin (\omega t)$	$\underline{E}_{A}=E e^{j 0^{\circ}}$	
$e_{B}(t)=E_{m} \sin \left(\omega t-120^{\circ}\right)$	$\underline{E}_{B}=E e^{-j 120^{\circ}}$	$\underline{E}_{A}+\underline{E}_{B}+\underline{E}_{C}=0$
$e_{C}(t)=E_{m} \sin \left(\omega t+120^{\circ}\right)$	$\underline{E}_{C}=E e^{j 120^{\circ}}$	\underline{E} - the complex (maximum) value
	E the rms (effective) value	

- Unbalanced load:

$$
\underline{Z}_{A} \neq \underline{Z}_{B} \neq \underline{Z}_{C}
$$

- U_{N} voltage:

$$
\underline{U}_{N}=\frac{\underline{E}_{A} \cdot \underline{Y}_{A}+\underline{E}_{B} \cdot \underline{Y}_{B}+\underline{E}_{C} \cdot \underline{Y}_{C}}{\underline{Y}_{A}+\underline{Y}_{B}+\underline{Y}_{C}} \neq 0
$$

where:

$$
\underline{Y}_{A}=\frac{1}{\underline{Z}_{A}}, \quad \underline{Y}_{B}=\frac{1}{\underline{Z}_{B}}, \quad \underline{Y}_{C}=\frac{1}{\underline{Z}_{C}}
$$

- Phase voltages of the load:
$\underline{U}_{A}=\underline{E}_{A}-\underline{U}_{N}, \quad \underline{U}_{B}=\underline{E}_{B}-\underline{U}_{N}, \quad \underline{U}_{C}=\underline{E}_{C}-\underline{U}_{N}$
- U_{N} voltage:

$$
\underline{U}_{N}=\frac{\underline{E}_{A} \cdot \underline{Y}_{A}+\underline{E}_{B} \cdot \underline{Y}_{B}+\underline{E}_{C} \cdot \underline{Y}_{C}}{\underline{Y}_{A}+\underline{Y}_{B}+\underline{Y}_{C}+\underline{Y}_{N}} \neq 0
$$

where:

$$
\underline{Y}_{A}=\frac{1}{\underline{Z}_{A}}, \quad \underline{Y}_{B}=\frac{1}{\underline{Z}_{B}}, \quad \underline{Y}_{C}=\frac{1}{\underline{Z}_{C}}, \quad \underline{Y}_{N}=\frac{1}{\underline{Z}_{N}}
$$

- Phase voltages of the load:
$\underline{U}_{A}=\underline{E}_{A}-\underline{U}_{N}, \quad \underline{U}_{B}=\underline{E}_{B}-\underline{U}_{N}, \quad \underline{U}_{C}=\underline{E}_{C}-\underline{U}_{N}$
- U_{N} voltage:

$$
\underline{U}_{N}=0
$$

- Phase voltages of the load:

$$
\underline{U}_{A}=\underline{E}_{A}, \quad \underline{U}_{B}=\underline{E}_{B}, \quad \underline{U}_{C}=\underline{E}_{C}
$$

- The line currents:

$$
\begin{gathered}
\underline{I}_{A}=\frac{\underline{U}_{A}}{\underline{Z}_{A}}, \quad \underline{I}_{B}=\frac{\underline{U}_{B}}{\underline{Z}_{B}}, \quad \underline{I}_{C}=\frac{\underline{U}_{C}}{\underline{Z}_{C}} \\
\underline{I}_{A}+\underline{I}_{B}+\underline{I}_{C}=0
\end{gathered}
$$

- The line currents:

$$
\begin{aligned}
& \underline{I}_{A}=\frac{\underline{U}_{A}}{\underline{Z}_{A}}, \quad \underline{I}_{B}=\frac{\underline{U}_{B}}{\underline{Z}_{B}}, \quad \underline{I}_{C}=\frac{\underline{U}_{C}}{\underline{Z}_{C}} \\
& \underline{I}_{A}+\underline{I}_{B}+\underline{I}_{C}=\underline{I}_{N}, \quad \underline{I}_{N}=\frac{\underline{U}_{N}}{\underline{Z}_{N}}
\end{aligned}
$$

- The line currents:

$$
\begin{gathered}
\underline{I}_{A}=\frac{\underline{U}_{A}}{\underline{Z}_{A}}, \quad \underline{I}_{B}=\frac{\underline{U}_{B}}{\underline{Z}_{B}}, \quad \underline{I}_{C}=\frac{\underline{U}_{C}}{\underline{Z}_{C}} \\
\underline{I}_{A}+\underline{I}_{B}+\underline{I}_{C}=\underline{I}_{N}
\end{gathered}
$$

- The line voltages (line-to-line):

$$
\begin{aligned}
& \underline{U}_{A B}=\underline{E}_{A}-\underline{E}_{B}=\sqrt{3} E e^{j 30^{\circ}} \\
& \underline{U}_{B C}=\underline{E}_{B}-\underline{E}_{C}=\sqrt{3} E e^{-j 90^{\circ}} \\
& \underline{U}_{C A}=\underline{E}_{C}-\underline{E}_{A}=\sqrt{3} E e^{j 150^{\circ}}
\end{aligned}
$$

- Active, reactive and apparent power:

$$
\begin{gathered}
P=U_{A} \cdot I_{A} \cdot \cos \varphi_{A}+U_{B} \cdot I_{B} \cdot \cos \varphi_{B}+U_{C} \cdot I_{C} \cdot \cos \varphi_{C} \\
Q=U_{A} \cdot I_{A} \cdot \sin \varphi_{A}+U_{B} \cdot I_{B} \cdot \sin \varphi_{B}+U_{C} \cdot I_{C} \cdot \sin \varphi_{C} \\
S=U_{A} \cdot I_{A}+U_{B} \cdot I_{B}+U_{C} \cdot I_{C}
\end{gathered}
$$

- Complex power:

$$
\underline{S}=\underline{U}_{A} \cdot \underline{I}_{A}^{*}+\underline{U}_{B} \cdot \underline{I}_{B}^{*}+\underline{U}_{C} \cdot \underline{I}_{C}^{*} \quad \underline{S}=P+j Q, \quad P=\operatorname{Re}\{\underline{S}\}, \quad Q=\operatorname{Im}\{\underline{S}\}
$$

- Phasor diagram of voltages:

- Phasor diagram of voltages:

- Phasor diagram of voltages:

ELECTRICAL CIRCUITS 2 - CLASS NO. 8 (30.04.2024)

POLLER IN AC CIRCUITS

* P-ACTIVE POUER (TRUE POUER, REAL POWER) unit: Watt [W]
$P=U_{\text {rms }} \cdot I_{\text {rms }} \cdot \cos \varphi_{1}$ where $\varphi=\psi_{u}-\psi_{i}$ (angle between voltage and current)

$$
U_{r m s}=\frac{U_{m}}{\sqrt{2}} \quad I_{r m s}=\frac{I_{m}}{\sqrt{2}} \rightarrow \quad P=\frac{U_{m} \cdot I_{m}}{2} \cdot \cos \varphi \quad P=R \cdot I_{r m s}^{2}=\frac{U_{1 m s}^{2}}{R}
$$

* Q -REACTIVE POUER unit: voltampere (reactive) [var]
$Q=U_{\text {rms }} \cdot I_{r m s} \cdot \sin \varphi \quad Q=\psi_{u}-\psi_{i}$ (angle between voltage and current)

$$
Q=\frac{U_{m} \cdot I_{m}}{2} \sin \varphi \quad Q=X \cdot I_{r m s}^{2}=\frac{U_{r m s}^{2}}{X}
$$

* S-APPARENT POUER unit: voltampere [VA]
$S=U_{\text {rms }} \cdot I_{\text {rms }}$

$$
S=I_{\text {rms }}^{2} \cdot 2=\frac{U_{\text {rms }}^{2}}{2}
$$

* s-phasor poler (COmplex poler)

$$
\underline{S}=\underline{U} \cdot I^{*} \quad \underline{S}=P+j Q \quad P=\operatorname{Re}[\underline{S}] \quad Q=\ln [\underline{S}]
$$

* the polder triangle

* THE PODER FACTOR (pf)

$$
(p f)=\frac{p}{s}=\cos \varphi
$$

* the ratio between the active power and the apparent power of a load is called the power factor of the load
 lagging power factor
* inductive loads always have a logging power factor
leading poser factor
* capacitive loads always have a leading power factor

PROBLEM \#2, CLASS 7
The three-phase electric heater consists of three heating coils V-connected. The nominal power of the heater is $P_{n}=3 \mathrm{kLD}$, and the nominal voltage $U_{n}=230 \mathrm{Vms}$. The heater has been damaged. After its repair the length of the first coil decreased by 5% and the length of the second coil by 10%.
a) calculate the line currents before repairing the heater,

$$
\begin{aligned}
& P=\frac{P_{n}}{3}=\frac{3000}{3}=1000 \mathrm{~W} \\
& R_{1}=R_{2}=R_{3}=R \quad R=\frac{U_{n}^{2}}{P}=\frac{230^{2}}{1000}=52.3 \Omega \\
& E_{1}=230 e^{j 09}=230 \mathrm{~V} \\
& E_{2}=230 e^{-j 1200}=(-115-j 119.19) \mathrm{V} \\
& E_{3}=230 e^{+j 1200}=(-115+j 119.19) \mathrm{V}
\end{aligned}
$$

$$
\begin{array}{ll}
I_{1}=\frac{E_{1}}{R}=\frac{230}{52.9}=4.3478=4.3478 e^{j 00} \mathrm{~A} & I_{1}+I_{2}+I_{3}=0 \\
I_{2}=\frac{E_{2}}{R}=\frac{-115-j 119.19}{52.9}=(-2.1739-j 3.7653)=4.3478 e^{-j 1200} \mathrm{~A} & I_{1}=I_{2}=I_{3} \\
I_{3}=\frac{E_{3}}{R}=\frac{-115+j 119.18}{52.3}=(-2.1739+j 3.7653)=4.3478 e^{-j 120^{\circ}} \mathrm{A} &
\end{array}
$$

b) calculate line currents, the current in the neutral line and the power of the repaired heater

$$
\begin{aligned}
& R_{1}=0.95 R=0.95 \cdot 52.9=50.255 \Omega \\
& R_{2}=0.9 R=0.9 \cdot 52.9=47.61 \Omega \\
& R_{3}=R=52.9 \Omega
\end{aligned}
$$

$$
I_{1}=\frac{E_{1}}{R_{1}}=\frac{230}{50.255}=4.5767=4.5767 e^{j 00} \mathrm{~A}
$$

$$
I_{2}=\frac{E_{2}}{R_{2}}=\frac{(-115-j M 9.19)}{47.61}=(-2.4155-j 4.1837)=4.8305 e^{-j 1200} \mathrm{~A}
$$

$$
\underline{I}_{3}=\frac{E_{3}}{Q_{3}}=\frac{(-115+j 119,19)}{52.9}=(-2.1739+j 3.7653)=4.3478 e^{+j 1200^{\circ}} \mathrm{A}
$$

$$
\begin{aligned}
& I_{N}=I_{1}+I_{2}+I_{3}=4.5767-2.4155-j 4.1837-2.1739+j 3.7653=(-0.0127-j 0.4184)=0.4186 e^{-j 91.76^{\circ}} \mathrm{A} \\
& P_{n}=\frac{u_{n}^{2}}{R_{1}}+\frac{U_{n}^{2}}{R_{2}}+\frac{U_{n}^{2}}{R_{3}}=\frac{230^{2}}{50.255}+\frac{230^{2}}{47.61}+\frac{230^{2}}{52.9}=3163.7 \mathrm{~W} \\
& \operatorname{An}=\operatorname{Re}\{\underline{S}\}=\operatorname{Re}\left\{\underline{E}_{1} \cdot I_{1}^{*}+\underline{E}_{2} \cdot \underline{I}_{2}^{*}+\underline{E}_{3} \cdot \underline{I}_{3}^{*}\right\}=\operatorname{Re}\{230 \cdot(4.5769)+(-115-j 118.19)(-2.4155+j 4.1837)+ \\
& +(-115+j 118.19)(-2.1739-j 3.7653)\}=3163.7 \mathrm{~W}
\end{aligned}
$$

c) calculate line currents and the poser of the repaired heater, when the neutral line is not connected

$$
\begin{aligned}
& Y_{1}=\frac{1}{Z_{1}}=\frac{1}{R_{1}}=\frac{1}{50.255}=0.0199 \Omega^{-1} \\
& Y_{2}=\frac{1}{Z_{2}}=\frac{1}{R_{2}}=\frac{1}{47.61}=0.021 \Omega^{-1} \\
& \underline{V_{3}}=\frac{1}{\underline{Z}_{3}}=\frac{1}{R_{3}}=\frac{1}{52.9}=0.0189 \mathrm{ll}^{-1}
\end{aligned}
$$

No

$$
\begin{aligned}
& U_{\text {AN }}=\frac{\underline{E}_{1} \cdot \underline{y}_{1}+\underline{E}_{2} \cdot \underline{y}_{2}+\underline{E}_{3} \cdot \underline{y}_{3}}{\underline{y}_{1}+\underline{y}_{2}+\underline{y_{3}}}=\frac{230 \cdot 0.0199+(-115-j 199.19) \cdot 0.021+(-115+j 199.19) \cdot 0.0189}{0.0199+0.021+0.0189}= \\
& =(-0.2126-j 6.9954) \mathrm{V} \\
& I_{1}=\frac{U_{1}}{R_{1}}=\frac{E_{1}-U_{N N^{1}}}{R_{1}}=\frac{230+0.2126+j 6.8954}{50.255}=4.5809+j 0.1392=4.583 e^{+j 1.744^{\circ}} \mathrm{A} \\
& I_{2}=\frac{\underline{U}_{2}}{R_{2}}=\frac{E_{2}-U_{N_{N}}}{R_{2}}=\frac{(-115-j 199.19)+0.2126+j 6.9954}{47.61}=-2.411-j 4.0368=4.702 e^{-j 120.85^{\circ}} \mathrm{A} \\
& I_{3}=\frac{U_{3}}{R_{3}}=\frac{E_{3}-U_{N N^{\prime}}}{R_{3}}=\frac{(-115+j 199.19)+0.2126+j 6.9954}{52.9}=-2.1698+j 3.8976=4.4609 e^{+j 119.11} \mathrm{~A}
\end{aligned}
$$

PROBLEM \# 1
In a 3-phase unbalanced y - y system, the source voltage is $E_{p h}=230 \mathrm{Vrms}$. The load impedonces are: $Z_{A}=(6+j 8) \Omega \Omega, Z_{B}=(8+j 6) \Omega, Z_{c}=20 \Omega$. What should be the rated current of the overcurrent circuit breakers protecting this circuit? Standard rated currents are: 6A, 10A, 16 A, 20A, 25 $, 32 \mathrm{~A}, 40 \mathrm{~A}, 50 \mathrm{~A}, 63 \mathrm{~A}, 80 \mathrm{~A}, 125 \mathrm{~A}$. What is the cost of active energy used by this load during one week (8 h per day, 5 days, $0.289 € / \mathrm{kwh}$)? Consider two cases:
a) without a neutral wire, b) with a neutral wite.

Draws phasor diagrams of currents and voltages for both cases.
a)

$$
\begin{aligned}
& E_{A}=230 e^{j 0^{\circ}}=230 \mathrm{~V} \\
& E_{B}=230 e^{-j 1200}=(-115-j 199.19) \mathrm{V} \\
& \underline{E}_{C}=230 e^{+j 1190}=(-115+j 199.19) \mathrm{V} \\
& \underline{y}_{A}=1 / \underline{Z}_{A}=1 /(6+j 8)=(0.06-j 0.08) \mathrm{S} \\
& \underline{y}_{B}=1 / \underline{Z}_{B}=1 /(8+j 6)=(0.08-j 0.06) \mathrm{S} \\
& \underline{y}_{C}=1 / \underline{z}_{c}=1 / 20=0.05 \mathrm{~S}
\end{aligned}
$$

$$
\begin{aligned}
\underline{U}_{N} & =\frac{E_{A} \cdot \underline{Y}_{A}+\underline{E}_{B} \cdot Y_{B}+\underline{E}_{C} \cdot Y_{C}}{\underline{Y}_{A}+\underline{Y}_{B}+\underline{Y}_{C}}=\frac{(230) \cdot(0.06-j 0.08)+(-115-j 199.19) \cdot(0.08-j 0.06)+(-115+j 199.19) \cdot(0.05)}{0.06-j 0.08+0.08-j 0.06+0.05}= \\
& =(-0.77-j 82.54)=92.54 e^{-j 90.477^{\circ}} \mathrm{V} \\
\underline{U}_{A} & =\underline{E}_{A}-\underline{U}_{N}=230-(-0.79-j 92.54)=\cdot(230.77+j 92.54) V=248.63 e^{j 21.85^{\circ}} \mathrm{V} \\
\underline{U}_{B} & =\underline{E}_{B}-\underline{U}_{N}=(-115-j 199.19)-(-0.77-j 92.54)=(-114.23-j 106.65) \mathrm{V}=156.28 \mathrm{e}^{-j 136.97^{\circ}} \mathrm{V} \\
\underline{U}_{C} & =\underline{E_{C}}-\underline{U}_{N}=(-115+j 199.19)-(-0.77-j 92.54)=(-114.23+j 291.73) V=313.30 e^{j 111.38^{\circ}} \mathrm{V}
\end{aligned}
$$

$$
\begin{aligned}
& I_{A}=\frac{U_{A}}{Z_{A}}=\frac{230.77+j 92.54}{6+j 8}=(21.25-j 12.81) A=24.86 e^{-j 31.28^{\circ}} \mathrm{A} \\
& I_{B}=\frac{U_{B}}{Z_{B}}=\frac{-114.23-j 106.65}{8+j 6}=(-15.54-j 1.68) \mathrm{A}=15.63 e^{-j 173.84^{\circ}} \mathrm{A} \\
& I_{C}=\frac{U_{C}}{Z_{C}}=\frac{-114.23+j 281.73}{20}=(-5.71+j 14.58) \mathrm{A}=15.66 e^{j 111.38^{\circ}} \mathrm{A}
\end{aligned}
$$

$$
P_{\text {TOTAL }}=\operatorname{Re}\left\{\underline{Z A\}} I_{A}^{2}+\operatorname{Re}\{\underline{Z}\} \cdot \cdot I_{B}^{2}+\operatorname{Re}\{\underline{2 C}\} \cdot I_{C}^{2}=\right.
$$

$$
=6 \cdot 24.86^{2}+8 \cdot 15.63^{2}+20 \cdot 15.66^{2}=
$$

$$
=10570.5 \mathrm{~W}
$$

$$
W=P_{\text {Total }} \cdot \text { time }=10570.5 \cdot 8 \cdot 5=
$$

$$
=422820 \mathrm{wh}=422.82 \mathrm{kwh}
$$

$$
\text { cost }=422.82 \cdot 0.289=122.2 \text { Euro }
$$

The rated current of the overcurrent circuit breaker:

$$
\ln =25 \mathrm{~A}
$$

6)

$$
\begin{aligned}
& E_{A}=230 e^{j 00^{0}}=230 \mathrm{~V} \\
& E_{B}=230 e^{-j 120^{\circ}}=(-115-j 199.19) \mathrm{V} \\
& \underline{E}_{C}=230 e^{+j 1200}=(-115+j 199.19) \mathrm{V} \\
& \underline{U}_{A}=E_{A} \quad \underline{U}_{B}=\underline{E}_{B} \quad \underline{U_{C}}=\underline{E}_{C}
\end{aligned}
$$

$$
\begin{aligned}
& I_{A}=\frac{U_{A}}{Z_{A}}=\frac{230}{6+j 8}=(13.8-j 18.4)=23 e^{-j 53.13^{\circ}} \mathrm{A} \\
& I_{B}=\frac{U_{B}}{Z_{B}}=\frac{(-115-j 199.19)}{8+j 6}=(-21.15-j 9.04) A=23 e^{-j 156.87^{\circ}} \mathrm{A} \\
& I_{C}=\frac{U_{C}}{Z_{C}}=\frac{(-115+j 189.19)}{20}=(-5.75+j 9.96) A=11.5 e^{j j 120^{\circ}} \mathrm{A}
\end{aligned}
$$

The rated current of the overcurrent circuit breaker:

$$
I_{n}=25 \mathrm{~A}
$$

$I_{N}=I_{A}+I_{B}+I_{C}=(13.8-j 18.4)+(-21.15-j 9.04)+(-5.75+j 9.86)=(-13.10-j 17.48) A=21.84 e^{-j 126.86^{\circ}} \mathrm{A}$ $P_{\text {Total }}=\operatorname{Re}\left\{Z_{A}\right\} \cdot A_{A}^{2}+\operatorname{Re}\{Z B\} \cdot I_{B}^{2}+\operatorname{Re}\{2 C\} \cdot I_{C}^{2}=6 \cdot 23^{2}+8 \cdot 23^{2}+20 \cdot 11.5^{2}=10051 \mathrm{~W}$ $W=P_{\text {Total }} \cdot$ time $=10051 \cdot 8.5=402.040 \mathrm{~Wh}=402.04 \mathrm{kuh}$ cost $=402.04 \cdot 0.283=116.19$ Euro

$$
\underline{I}_{A}+\underline{I}_{B}+\underline{I}_{C}=I_{N}
$$

PROBLEM \#2

A balanced 3-phase distribution line is used to supply three balanced y-loads that are connected in parallel: Loaned 1: 37 kVA at 0.72 . Pf lagging

Load 2: 64 kVA at 0.83 pf , leading
Load 3: 55 kw and 28 kVAr .
The line voltage at the load is 600 V rms. Find the line current in the distribution line and the combined power factor (af) at the load.

$S=P_{+j Q} \quad P=S \cdot \cos \varphi \quad Q=S \cdot \sin \varphi \quad S=\sqrt{\rho^{2}+Q^{2}} \rightarrow Q=\sqrt{S^{2}-\rho^{2}}$

Load 1

$S_{1}=37000 \mathrm{vA} \quad \cos \varphi_{1}=0.72$
$P_{1}=S_{1} \cdot \cos \varphi_{1}=37000 \cdot 0.72=26640 \mathrm{~W}$
$Q_{1}=\sqrt{S_{1}^{2}-P_{1}^{2}}=\sqrt{37000^{2}-26640^{2}}=25679 \mathrm{VAr}$
$S_{1}=P_{1}+j Q_{1}=(26640+j 25677)$ VA $\quad P f$ is lagging $\rightarrow Q>0$
Land 2
$\underline{S}_{2}=64000 \mathrm{VA} \quad \cos \varphi_{2}=0.83$
$P_{2}=S_{2} \cdot \cos \varphi_{2}=64000 \cdot 0.83=53120 \mathrm{~W} \quad Q_{2}=\sqrt{S_{2}^{2}-P_{2}^{2}}=\sqrt{64000^{2}-53120^{2}}=35697 \mathrm{VAr}$
$S_{2}=P_{2}-j Q_{2}=(53120-j 35687)$ VA Pf is leading $\rightarrow Q<0$

Load 3
$P_{3}=55000 \mathrm{~W} \quad Q_{3}=29000 \mathrm{VAr}$
$\underline{S}_{3}=P_{3}+j Q_{3}=(55000+j 29000) \mathrm{VA}$
S_{T} - total apparent power
$\underline{S}_{T}=\underline{S}_{1}+\underline{S}_{2}+\underline{S}_{3}=26640+j 25677+53120-j 35687+55000+j 29000=(134760+j 18980) \mathrm{VA}=$ $=136080 e^{j 8.02^{\circ}} \mathrm{VA}$
in the case of balanced load
$S_{T}=3 \cdot V_{p} \cdot I_{\rho} \quad V_{p}$-phase voltage, I_{p}-phase current or
$\begin{array}{ll}\underbrace{S_{T}=\sqrt{3} \cdot V_{L} \cdot I_{L}}_{\Downarrow} & V_{L} \text {-line voltage, } I_{L} \text {-line current }\end{array} \quad \begin{aligned} & \text { Combined power factor } \\ & \varphi=8.02^{\circ} \quad \cos \varphi=\cos 8.02^{\circ}=0.99 \\ & I_{L}=\frac{S_{T}}{\sqrt{3} \cdot V_{L}}=\frac{136090}{\sqrt{3} \cdot 660}=119.05 \mathrm{~A}\end{aligned}$

PROBLEM \#3

A 3-phase electric heater with nominal power $P_{n}=15 \mathrm{~kL}$ is used to heat the warehouse. The heater is supplied from a power network with a phase voltage of $u_{n}=230 \mathrm{~V}$. The heating elements are Δ-connected. The heater operates at full power for 12 hours a day. A photovoltaic installation hos been installed in close proximity to the warehouse, which has caused the phase voltage increase from $U_{n}=230 \mathrm{~V}$ to $U_{n}^{\prime}=242 \mathrm{~V}$. Calculate the percentage increase in workhouse heating costs in one day due to the increase in phase voltage.

The energy consumption: $W=P_{n} \cdot t=15000 \cdot 12=180 \mathrm{kwh}$
Poser of one phase of the heater: $\rho_{1}=\frac{\rho_{n}}{3}=\frac{15000}{3}=5 \mathrm{~kJ}$
$P_{1}=U_{\text {phase }} \cdot I_{\text {phase }} \cdot \cos \varphi=\frac{U_{\text {phase }}^{2}}{R} \cdot \cos \varphi \quad U_{\text {phases }}=U_{L}=\sqrt{3} U_{n}$
$R=\frac{\text { uphose }^{2}}{P_{1}}=\frac{\left(\sqrt{3} u_{n}\right)^{2}}{P_{1}}=\frac{(\sqrt{3} \cdot 230)^{2}}{5000}=31.74 \Omega$
$\cos \varphi=1$ (the healer is resistive in nature)
$u_{n}=230 \mathrm{~V} \rightarrow u_{n}{ }^{\prime}=242 \mathrm{~V}$ (increase by 5.2%)
Power of one phase of the heater: $P_{1}^{\prime}=\frac{u_{L}^{2}}{R}=\frac{\left(\sqrt{3} \cdot u_{n}^{\prime}\right)^{2}}{R}=\frac{(\sqrt{3} \cdot 212)^{2}}{31.74}=5535.35 \mathrm{l}$
$W^{\prime}=3 \cdot 12 \cdot P_{1}^{\prime}=3 \cdot 12 \cdot 5535.35=199.27 \mathrm{kLh}$
The percentage increase in costs:

$$
\frac{W^{\prime}-\omega}{\omega} \cdot 100 \%=\frac{199.27-180}{180} \cdot 100 \%=10.71 \%
$$

PROBLEM \#4

In the room, these is a three-phase electric motor supplied from a power network with a voltage of $u_{n}=230 / 400 \mathrm{~V}$. The motor windings are Δ-connected. The motors parameters are: nominal power $p_{1}=15 \mathrm{~kL}$, motor efficiency $\eta_{1}=0.895$, power factor $\cos \varphi_{1}=0.9$. It was decided to instal a second three-phase motor in the same room with the parameters: $\rho_{2}=7.5 \mathrm{~kW}, \eta_{2}=0.88, \cos \varphi_{2}=0.88$. The room is supplied with power by a copper wire $5 \times 6 \mathrm{~mm}^{2}$. check whether, after installing the second motor, the cable cross-section will be sufficient due to its long-term current carrying capacity. In the case of 5 -core copper conductors laid in the room, the long-term current carrying capacities ore: $1.5 \mathrm{~mm}^{2}-17 \mathrm{~A}, 2.5 \mathrm{~mm}^{2}-24 \mathrm{~A}$, $4 m^{2}-31 \mathrm{~A}, 6 \mathrm{~mm}^{2}-40 \mathrm{~A}, 10 \mathrm{~mm}^{2}-55 \mathrm{~A}$.
$\eta=\frac{\text { mechanical poser }}{\text { electrical poser }} \Rightarrow$ electrical power $=\frac{\text { mechanical power }}{\eta}$
$P_{1 e}=\frac{P_{1}}{\eta_{1}}=\frac{15000}{0.885}=16759.8 \mathrm{~W}$
$\rho_{2 e}=\frac{\rho_{2}}{\eta_{2}}=\frac{7500}{0.88}=8522.7 \mathrm{~W}$
$S=\frac{p}{\cos \varphi} \quad Q=\sqrt{S^{2}-\rho^{2}}$
$S_{1}=\frac{P_{1 e}}{\cos \varphi_{1}}=\frac{16759.8}{0.9} 18622 \mathrm{VA} \quad Q_{1}=\sqrt{S_{1}^{2}-P_{1 e}^{2}}=\sqrt{18622^{2}-16759.8^{2}}=8117.1 \mathrm{VAr}$
$S_{2}=\frac{P_{2 e}}{\cos \varphi_{2}}=\frac{8522.7}{0.88}=9684.9 \mathrm{VA} \quad Q_{2}=\sqrt{S_{2}^{2}-P_{2 e}^{2}}=\sqrt{9684.3^{2}-8522.7^{2}}=4600 \mathrm{VAr}$
$S_{1}=P_{1 e}+j Q_{1}=(16759.8+j 8117.1) V A$
$S_{2}=P_{2 e}+j Q_{2}=(8522.7+j 4600) V A$
$\underline{S}_{T}=\underline{S}_{1}+\underline{S}_{2}=(25282.5+j 12717.1) \mathrm{VA} \quad S_{T}=\left|\underline{S}_{T}\right|=28300 \mathrm{VA}$
$S=3 \cdot U_{\text {phase }} \cdot I_{\text {phase }}=\sqrt{3} \cdot U_{\text {line }} \cdot I_{\text {line }}$
$I_{\text {line }}=\frac{s}{\sqrt{3} U_{\text {line }}}=\frac{28300}{\sqrt{3} \cdot \sqrt{3} \cdot 230}=41.02 \mathrm{~A} \quad \begin{aligned} & \text { The coss section of the cable supplying } \\ & \text { the motors will be too Small. }\end{aligned}$

