Module name:	Electrical Circuits 2
Module ID:	IS-FEE-10085S
Module type:	Class
Semester:	summer 2023/2024
Instructor:	Jarosław Forenc, j.forenc@pb.edu.pl

Class 8 (30.04.2024)

- In a 3-phase unbalanced Y-Y system, the source voltage is E_{ph} = 230 V rms. The load impedances are: <u>Z</u>_A = (6+j8) Ω, <u>Z</u>_B = (8+j6) Ω, <u>Z</u>_C = 20 Ω. What should be the rated current of the overcurrent circuit breakers protecting this circuit? Standard rated currents are: 6 A, 10 A, 16 A, 20 A, 25 A, 32 A, 40 A, 50 A, 63 A, 80 A, 125 A. What is the cost of active energy used by this load during one week (8h per day, 5 days, 0.289 €/kWh)? Consider two cases:
 a) without a neutral wire, b) with a neutral wire. Draw phasor diagrams of currents and voltages for both cases.
- 2. A balanced 3-phase distribution line is used to supply three balanced Y-loads that are connected in parallel:

Load 1: 37 kVA at 0.72 power factor, lagging Load 2: 64 kVA at 0.83 power factor, leading Load 3: 55 kW and 29 kVAr.

The line voltage at the load is 660 V rms. Find the line current in the distribution line and the combined power factor (pf) at the load.

3. A 3-phase electric heater with nominal power $P_n = 15$ kW is used to heat the warehouse. The heater is supplied from a power network with a phase voltage of $U_n = 230$ V. The heating elements are Δ -connected. The heater operates at full power for 12 hours a day. A photovoltaic installation has been installed in close proximity to the warehouse, which has caused the phase voltage increase from $U_n = 230$ V to $U_n' = 242$ V. Calculate the percentage increase in warehouse heating costs in one day due to the increase in phase voltage.

- 4. In the room, there is a three-phase electric motor supplied from a power network with a voltage of $U_n = 230/400$ V. The motor windings are Δ -connected. The motor parameters are: nominal power $P_1 = 15$ kW, motor efficiency $\eta_1 = 0.895$, power factor $\cos \varphi_1 = 0.9$. It was decided to install a second three-phase motor in the same room with the parameters: $P_2 = 7.5$ kW, $\eta_2 = 0.88$, $\cos \varphi_2 = 0.88$. The room is supplied with power by a copper wire 5×6 mm². Check whether, after installing the second motor, the cable cross-section will be sufficient due to its long-term current carrying capacity. In the case of 5-core copper conductors laid in the room, the long-term current carrying capacities are: 1.5 mm² - 17 A, 2.5 mm² - 24 A, 4 mm² - 31 A, 6 mm² - 40 A, 10 mm² -55 A.
- 5. In a balanced Y-Δ three phase system, the source line voltage is 330 V rms. The impedance per phase of the load is <u>Z</u>_{load} = (30+j27) Ω. The line impedance is <u>Z</u>_{line} = (2+j3) Ω. Find the annual cost of energy losses in this line (300 days, 10 hours/day, 0.289 €/kWh)

30.04.2024 Jarosław Forenc, PhD <u>j.forenc@pb.edu.pl</u>