Module name: Electrical Circuits 2

Module ID:
Module type:
Semester:
Instructor:

IS-FEE-10085S
Class
summer 2023/2024
Jarosław Forenc, j.forenc@pb.edu.pl

1. The circuit shown in the figure has been in a steady-state. The switch was open at $t=0$.
Find and plot $i_{L}(\mathrm{t})$ for $\mathrm{t}<0, \mathrm{t}=0$ and $\mathrm{t}>0$.
$\mathrm{E}=80 \mathrm{~V}, \mathrm{R}_{1}=120 \Omega, \mathrm{R}_{2}=50 \Omega, \mathrm{R}_{3}=200 \Omega$,
$\mathrm{L}_{2}=0.75 \mathrm{H}$.

2. The circuit shown in the figure has been in a steady-state. The switch was open at $t=0$. Calculate and plot $i_{c}(t)$ and $u_{c}(t)$ for $t<0, t=0$ and $\mathrm{t}>0$.
$\mathrm{E}=100 \mathrm{~V}, \mathrm{R}_{1}=20 \Omega, \mathrm{R}_{2}=40 \Omega, \mathrm{C}=10 \mathrm{mF}$.

3. The circuit shown in the figure has been in a steady-state. The switch was open at $t=0$. Plot $i_{1}(t)$ and $i_{2}(t)$ for $t<0, t=0$ and $t>0$. $E=100 \mathrm{~V}, \mathrm{~L}=0.1 \mathrm{H}, \mathrm{R}_{1}=25 \Omega, \mathrm{R}_{2}=75 \Omega$.

