
Introduction to Programming in CIntroduction to Programming in C

BiałystokBiałystok University of TechnologyUniversity of Technology

Faculty of Electrical EngineeringFaculty of Electrical Engineering

Academic year 2023/2024Academic year 2023/2024

(IS(IS--FEEFEE--10061S)10061S)

Academic year 2023/2024Academic year 2023/2024

Workshop no. Workshop no. 1111 ((1616.0.055.2024).2024)

Jarosław Forenc, PhD

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 2/29

TopicsTopics

 Pointers

 declaration, value assignment declaration, value assignment

 relation to arrays, operations on pointers

 Dynamic memory allocation

 calloc(), malloc(), free() functions

 memory allocation for structure, vector and matrix

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 3/29

Pointers: what is a pointer?Pointers: what is a pointer?

 Pointer - a variable that may contain the address of a memory area
- usually the address of another variable (object)- usually the address of another variable (object)

int a;

float b;

char c, d;

int tab[4], e;

double f;

 Variables stored in the computer's memory

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 4/29

Pointers: what is a pointer?Pointers: what is a pointer?

 Each variable is located at a specific address in memory and,
depending on the type, occupies a certain number of bytes

 During program compilation, all variable names are replaced During program compilation, all variable names are replaced
with their addresses

 Printing the variable address:

printf("The address of the variable a: %p\n", &a);

printf("The address of the array tab: %p\n", tab);

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 5/29

Pointers: what is a pointer?Pointers: what is a pointer?

 Each variable is located at a specific address in memory and,
depending on the type, occupies a certain number of bytes

 During program compilation, all variable names are replaced During program compilation, all variable names are replaced
with their addresses

 Printing the variable address:

printf("The address of the variable a: %p\n", &a);

printf("The address of the array tab: %p\n", tab);

The address of the variable a: 0028FF3C

The address of the array tab: 0028FF20

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 6/29

Pointers: declarationPointers: declaration

 When declaring a pointer (pointing variable), we must specify
the type of object to which it pointsthe type of object to which it points

 A pointer declaration looks the same as any other variable,
except that its name is preceded by an asterisk (*)

type *variable_name;

or

type* variable_name;

or

type * variable_name;

or

type*variable_name;

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 7/29

Pointers: declarationsPointers: declarations

 Declaration of pointer to type int

 We say that the type of ptr is: pointer to int

 To store the address of a double variable, we must declare
a variable of type: pointer to double

int *ptr;

 We can declare pointers to data of any type, including
pointer-to-pointer-to…

double *ptrd;

char **ptrc;

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 8/29

Pointers: declarationsPointers: declarations

 We can declare arrays of pointers - the tab_ptr variable is an array
containing 5 pointers to int typecontaining 5 pointers to int type

int *tab_ptr[5];

 The ptr_tab variable, on the other hand, is a pointer to a 5-element
array of int

int (*ptr_tab)[5];

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 9/29

Pointers: assigning values to pointersPointers: assigning values to pointers

 We can assign an address of variable to a pointer

Such addresses are created using the address operator (&) Such addresses are created using the address operator (&)

 Having the address of a variable, we can "get" to its value using the

int a = 10;

int *ptr;

ptr = &a;

 Having the address of a variable, we can "get" to its value using the
dereference operator (indirection operator) - asterisk (*)

*ptr = 20;

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 10/29

Pointers: null pointerPointers: null pointer

 A null pointer is a special value, distinct from all other pointer
values, for which inequality is guaranteed with a pointer to any values, for which inequality is guaranteed with a pointer to any
object

 An integer expression with a value of zero (0) is used to write
a null pointerro (0)

int *ptr = 0;

 Instead of the value 0, the symbolic constant NULL can be used,
which is changed to 0 during program compilation

int *ptr = NULL;

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 11/29

Example: assigning values to pointersExample: assigning values to pointers

#include <stdio.h> x = 15

ptri = 0000000000000000

int main(void)

{

int x = 15;

int *ptri = NULL;

printf("x = %d\n",x);

printf("ptri = %p\n",ptri);

ptri = &x; // address assignment

ptri = 0000000000000000

ptri = 00000000010FF960

x = 25

x = 25

ptri = &x; // address assignment

printf("ptri = %p\n",ptri);

*ptri = *ptri + 10; // x = x + 10

printf("x = %d\n",x);

printf("x = %d\n",*ptri);

return 0;

}

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 12/29

Pointers and arraysPointers and arrays

 The name of the array is its address (more precisely - the address
of the element with index 0)of the element with index 0)

int tab[5] = {10,15,37,16,25};

10

0

15 37 16 25

1 2 3 4

10

0

15 37 16 25

1 2 3 4

tab tab

 Using the operator * before the name of the array allows us
to "get" to the contents of the element with index 0

*tab is equivalent to tab[0]

tab tab

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 13/29

Pointers and arraysPointers and arrays

 Adding 1 to the array address takes us to the array element at
index 1index 1

therefore: *(tab+1) is equivalent to tab[1]

10

0

15 37 16 25

1 2 3 4

10

0

37 16 25

1 2 3 4

tab+1 tab+1

15

therefore: *(tab+1) is equivalent to tab[1]

in general: *(tab+i) is equivalent to tab[i]

 The *(tab+i) notation requires parentheses because the * operator
has a very high precedence

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 14/29

Pointers and arraysPointers and arrays

 Omitting the parentheses results in invalid access to array elements

int tab[5] = {10,15,37,16,25};

int x;

x = *(tab+2);

printf("x = %d",x); /* x = 37 */

x = *tab+2;

printf("x = %d",x); /* x = 12 */

x = *(tab+2); is equivalent to x = tab[2];

x = *tab+2; is equivalent to x = tab[0]+2;

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 15/29

Dynamic memory allocationDynamic memory allocation

 When is dynamic memory allocation used?

 when the size of the array will be known only during program when the size of the array will be known only during program
execution and not during its compilation

 when the size of the array is very large

 The following functions are used for dynamic memory allocation:

 calloc()

 malloc()

 Memory is allocated in the heap

 The allocated memory should be freed by calling the function:

 free()

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 16/29

Dynamic memory allocationDynamic memory allocation

CALLOC stdlib.h

 Allocates a num*size block of memory (capable of holding an array
of num-elements, each occupying size bytes)

 Returns a pointer to the allocated memory block

 If memory cannot be allocated, it returns NULL

void *calloc(size_t num, size_t size);

 Allocated memory is initialized to zeros (bitwise)

 The returned pointer value must be cast to the correct type

int *tab;

tab = (int *) calloc(10,sizeof(int));

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 17/29

Dynamic memory allocationDynamic memory allocation

MALLOC stdlib.h

 Allocates a block of memory containing size bytes

 Returns a pointer to the allocated memory block

 If memory cannot be allocated, it returns NULL

 Allocated memory is not initialized

void *malloc(size_t size);

 Allocated memory is not initialized

 The returned pointer value must be cast to the correct type

int *tab;

tab = (int *) malloc(10*sizeof(int));

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 18/29

Dynamic memory allocationDynamic memory allocation

FREE stdlib.h

 Frees the memory block pointed to by the ptr parameter

 The ptr value must be the result of a calloc() or malloc()
function call

void *free(void *ptr);

int *tab;int *tab;

tab = (int *) calloc(10,sizeof(int));

/* ... */

free(tab);

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 19/29

Example: dynamic memoy allocation for one variableExample: dynamic memoy allocation for one variable

#include <stdio.h>

#include <stdlib.h>

value = 123.45

#include <stdlib.h>

int main(void)

{

float *ptr;

ptr = (float *) calloc(1,sizeof(float));

if (ptr == NULL)

{

printf(" Memory allocation error\n");

return 0;return 0;

}

*ptr = 123.45f;

printf("value = %g\n",*ptr);

free(ptr);

return 0;

}

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 20/29

Example: dynamic memory allocation for stuctureExample: dynamic memory allocation for stucture

#include <stdio.h>

#include <stdlib.h>

10,20 - 30,40

#include <stdlib.h>

struct point

{

int x, y;

};

int main(void)

{

struct point p, *ptr_p;

ptr_p = (struct point*) malloc(sizeof(struct point));

p.x = 10; p.y = 20;

ptr_p->x = 30; ptr_p->y = 40;

printf("%d,%d - %d,%d\n",p.x,p.y,ptr_p->x,ptr_p->y);

free(ptr_p);

return 0;

}

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 21/29

Example: dynamic memory allocation for vectorExample: dynamic memory allocation for vector

#include <stdio.h>

#include <stdlib.h>

tab[0] = 0

tab[1] = 1#include <stdlib.h>

int main(void)

{

int *tab, n = 10;

tab = (int *) calloc(n,sizeof(int));

for (int i=0; i<n; i++)

{

tab[i] = i*i;

tab[1] = 1

tab[2] = 4

tab[3] = 9

tab[4] = 16

tab[5] = 25

tab[6] = 36

tab[7] = 49

tab[8] = 64

tab[9] = 81

tab[i] = i*i;

printf("tab[%d] = %d\n",i,tab[i]);

}

free(tab);

return 0;

}

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 22/29

Dynamic memory allocation for matrixDynamic memory allocation for matrix

 The calloc() and malloc() functions directly allocate memory only
for a vector of elementsfor a vector of elements

 Dynamic memory allocation for array requires special methods

 We allocate memory for a matrix containing N-rows and M-columns

[0][0] [0][1] [0][2] [0][3]

M

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

N

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 23/29

Dynamic memory allocation for matrix (1)Dynamic memory allocation for matrix (1)

 N×M-element vector

Memory allocation: Memory allocation:

int *tab = (int *) calloc(N*M,sizeof(int));

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 24/29

Dynamic memory allocation for matrix (1)Dynamic memory allocation for matrix (1)

 Access to array elements:

tab[i*M+j] *(tab+i*M+j)lub

tab[2][2] tab[2*4+2] = tab[10]

 Deallocation of memory:

free(tab);

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 25/29

Dynamic memory allocation for matrix (2)Dynamic memory allocation for matrix (2)

 N-element vector of pointers + N vectors with M elements

Memory allocation: Memory allocation:

int **tab = (int **) calloc(N,sizeof(int *));

for (i=0; i<N; i++)

tab[i] = (int *) calloc(M,sizeof(int));

...

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 26/29

Dynamic memory allocation for matrix (2)Dynamic memory allocation for matrix (2)

 Access to array elements:

Deallocation of memory:
tab[i][j]

 Deallocation of memory:

for (i=0; i<N; i++)

free(tab[i]);

free(tab);

...

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 27/29

Dynamic memory allocation for matrix (3)Dynamic memory allocation for matrix (3)

 N-element vector of pointers + N×M-element vector

Memory allocation: Memory allocation:

int **tab = (int **) malloc(N*sizeof(int *));

tab[0] = (int *) malloc(N*M*sizeof(int));

for (i=1; i<N; i++)

tab[i] = tab[0]+i*M;

...

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 28/29

Dynamic memory allocation for matrix (3)Dynamic memory allocation for matrix (3)

 Access to array elements:

Deallocation of memory:
tab[i][j]

 Deallocation of memory:

free(tab[0]);

free(tab);

...

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 29/29

End of workshop no. End of workshop no. 1111

Thank you for your attention!Thank you for your attention!

