
Introduction to Programming in CIntroduction to Programming in C

BiałystokBiałystok University of TechnologyUniversity of Technology

Faculty of Electrical EngineeringFaculty of Electrical Engineering

Academic year 2023/2024Academic year 2023/2024

(IS(IS--FEEFEE--10061S)10061S)

Academic year 2023/2024Academic year 2023/2024

Workshop no. Workshop no. 1111 ((1616.0.055.2024).2024)

Jarosław Forenc, PhD

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 2/29

TopicsTopics

 Pointers

 declaration, value assignment declaration, value assignment

 relation to arrays, operations on pointers

 Dynamic memory allocation

 calloc(), malloc(), free() functions

 memory allocation for structure, vector and matrix

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 3/29

Pointers: what is a pointer?Pointers: what is a pointer?

 Pointer - a variable that may contain the address of a memory area
- usually the address of another variable (object)- usually the address of another variable (object)

int a;

float b;

char c, d;

int tab[4], e;

double f;

 Variables stored in the computer's memory

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 4/29

Pointers: what is a pointer?Pointers: what is a pointer?

 Each variable is located at a specific address in memory and,
depending on the type, occupies a certain number of bytes

 During program compilation, all variable names are replaced  During program compilation, all variable names are replaced
with their addresses

 Printing the variable address:

printf("The address of the variable a: %p\n", &a);

printf("The address of the array tab: %p\n", tab);

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 5/29

Pointers: what is a pointer?Pointers: what is a pointer?

 Each variable is located at a specific address in memory and,
depending on the type, occupies a certain number of bytes

 During program compilation, all variable names are replaced  During program compilation, all variable names are replaced
with their addresses

 Printing the variable address:

printf("The address of the variable a: %p\n", &a);

printf("The address of the array tab: %p\n", tab);

The address of the variable a: 0028FF3C

The address of the array tab: 0028FF20

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 6/29

Pointers: declarationPointers: declaration

 When declaring a pointer (pointing variable), we must specify
the type of object to which it pointsthe type of object to which it points

 A pointer declaration looks the same as any other variable,
except that its name is preceded by an asterisk (*)

type *variable_name;

or

type* variable_name;

or

type * variable_name;

or

type*variable_name;

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 7/29

Pointers: declarationsPointers: declarations

 Declaration of pointer to type int

 We say that the type of ptr is: pointer to int

 To store the address of a double variable, we must declare
a variable of type: pointer to double

int *ptr;

 We can declare pointers to data of any type, including
pointer-to-pointer-to…

double *ptrd;

char **ptrc;

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 8/29

Pointers: declarationsPointers: declarations

 We can declare arrays of pointers - the tab_ptr variable is an array
containing 5 pointers to int typecontaining 5 pointers to int type

int *tab_ptr[5];

 The ptr_tab variable, on the other hand, is a pointer to a 5-element
array of int

int (*ptr_tab)[5];

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 9/29

Pointers: assigning values to pointersPointers: assigning values to pointers

 We can assign an address of variable to a pointer

Such addresses are created using the address operator (&) Such addresses are created using the address operator (&)

 Having the address of a variable, we can "get" to its value using the

int a = 10;

int *ptr;

ptr = &a;

 Having the address of a variable, we can "get" to its value using the
dereference operator (indirection operator) - asterisk (*)

*ptr = 20;

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 10/29

Pointers: null pointerPointers: null pointer

 A null pointer is a special value, distinct from all other pointer
values, for which inequality is guaranteed with a pointer to any values, for which inequality is guaranteed with a pointer to any
object

 An integer expression with a value of zero (0) is used to write
a null pointerro (0)

int *ptr = 0;

 Instead of the value 0, the symbolic constant NULL can be used,
which is changed to 0 during program compilation

int *ptr = NULL;

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 11/29

Example: assigning values to pointersExample: assigning values to pointers

#include <stdio.h> x = 15

ptri = 0000000000000000

int main(void)

{

int x = 15;

int *ptri = NULL;

printf("x = %d\n",x);

printf("ptri = %p\n",ptri);

ptri = &x; // address assignment

ptri = 0000000000000000

ptri = 00000000010FF960

x = 25

x = 25

ptri = &x; // address assignment

printf("ptri = %p\n",ptri);

*ptri = *ptri + 10; // x = x + 10

printf("x = %d\n",x);

printf("x = %d\n",*ptri);

return 0;

}

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 12/29

Pointers and arraysPointers and arrays

 The name of the array is its address (more precisely - the address
of the element with index 0)of the element with index 0)

int tab[5] = {10,15,37,16,25};

10

0

15 37 16 25

1 2 3 4

10

0

15 37 16 25

1 2 3 4

tab tab

 Using the operator * before the name of the array allows us
to "get" to the contents of the element with index 0

*tab is equivalent to tab[0]

tab tab

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 13/29

Pointers and arraysPointers and arrays

 Adding 1 to the array address takes us to the array element at
index 1index 1

therefore: *(tab+1) is equivalent to tab[1]

10

0

15 37 16 25

1 2 3 4

10

0

37 16 25

1 2 3 4

tab+1 tab+1

15

therefore: *(tab+1) is equivalent to tab[1]

in general: *(tab+i) is equivalent to tab[i]

 The *(tab+i) notation requires parentheses because the * operator
has a very high precedence

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 14/29

Pointers and arraysPointers and arrays

 Omitting the parentheses results in invalid access to array elements

int tab[5] = {10,15,37,16,25};

int x;

x = *(tab+2);

printf("x = %d",x); /* x = 37 */

x = *tab+2;

printf("x = %d",x); /* x = 12 */

x = *(tab+2); is equivalent to x = tab[2];

x = *tab+2; is equivalent to x = tab[0]+2;

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 15/29

Dynamic memory allocationDynamic memory allocation

 When is dynamic memory allocation used?

 when the size of the array will be known only during program  when the size of the array will be known only during program
execution and not during its compilation

 when the size of the array is very large

 The following functions are used for dynamic memory allocation:

 calloc()

 malloc()

 Memory is allocated in the heap

 The allocated memory should be freed by calling the function:

 free()

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 16/29

Dynamic memory allocationDynamic memory allocation

CALLOC stdlib.h

 Allocates a num*size block of memory (capable of holding an array
of num-elements, each occupying size bytes)

 Returns a pointer to the allocated memory block

 If memory cannot be allocated, it returns NULL

void *calloc(size_t num, size_t size);

 Allocated memory is initialized to zeros (bitwise)

 The returned pointer value must be cast to the correct type

int *tab;

tab = (int *) calloc(10,sizeof(int));

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 17/29

Dynamic memory allocationDynamic memory allocation

MALLOC stdlib.h

 Allocates a block of memory containing size bytes

 Returns a pointer to the allocated memory block

 If memory cannot be allocated, it returns NULL

 Allocated memory is not initialized

void *malloc(size_t size);

 Allocated memory is not initialized

 The returned pointer value must be cast to the correct type

int *tab;

tab = (int *) malloc(10*sizeof(int));

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 18/29

Dynamic memory allocationDynamic memory allocation

FREE stdlib.h

 Frees the memory block pointed to by the ptr parameter

 The ptr value must be the result of a calloc() or malloc()
function call

void *free(void *ptr);

int *tab;int *tab;

tab = (int *) calloc(10,sizeof(int));

/* ... */

free(tab);

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 19/29

Example: dynamic memoy allocation for one variableExample: dynamic memoy allocation for one variable

#include <stdio.h>

#include <stdlib.h>

value = 123.45

#include <stdlib.h>

int main(void)

{

float *ptr;

ptr = (float *) calloc(1,sizeof(float));

if (ptr == NULL)

{

printf(" Memory allocation error\n");

return 0;return 0;

}

*ptr = 123.45f;

printf("value = %g\n",*ptr);

free(ptr);

return 0;

}

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 20/29

Example: dynamic memory allocation for stuctureExample: dynamic memory allocation for stucture

#include <stdio.h>

#include <stdlib.h>

10,20 - 30,40

#include <stdlib.h>

struct point

{

int x, y;

};

int main(void)

{

struct point p, *ptr_p;

ptr_p = (struct point*) malloc(sizeof(struct point));

p.x = 10; p.y = 20;

ptr_p->x = 30; ptr_p->y = 40;

printf("%d,%d - %d,%d\n",p.x,p.y,ptr_p->x,ptr_p->y);

free(ptr_p);

return 0;

}

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 21/29

Example: dynamic memory allocation for vectorExample: dynamic memory allocation for vector

#include <stdio.h>

#include <stdlib.h>

tab[0] = 0

tab[1] = 1#include <stdlib.h>

int main(void)

{

int *tab, n = 10;

tab = (int *) calloc(n,sizeof(int));

for (int i=0; i<n; i++)

{

tab[i] = i*i;

tab[1] = 1

tab[2] = 4

tab[3] = 9

tab[4] = 16

tab[5] = 25

tab[6] = 36

tab[7] = 49

tab[8] = 64

tab[9] = 81

tab[i] = i*i;

printf("tab[%d] = %d\n",i,tab[i]);

}

free(tab);

return 0;

}

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 22/29

Dynamic memory allocation for matrixDynamic memory allocation for matrix

 The calloc() and malloc() functions directly allocate memory only
for a vector of elementsfor a vector of elements

 Dynamic memory allocation for array requires special methods

 We allocate memory for a matrix containing N-rows and M-columns

[0][0] [0][1] [0][2] [0][3]

M

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

N

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 23/29

Dynamic memory allocation for matrix (1)Dynamic memory allocation for matrix (1)

 N×M-element vector

Memory allocation: Memory allocation:

int *tab = (int *) calloc(N*M,sizeof(int));

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 24/29

Dynamic memory allocation for matrix (1)Dynamic memory allocation for matrix (1)

 Access to array elements:

tab[i*M+j] *(tab+i*M+j)lub

tab[2][2]  tab[2*4+2] = tab[10]

 Deallocation of memory:

free(tab);

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 25/29

Dynamic memory allocation for matrix (2)Dynamic memory allocation for matrix (2)

 N-element vector of pointers + N vectors with M elements

Memory allocation: Memory allocation:

int **tab = (int **) calloc(N,sizeof(int *));

for (i=0; i<N; i++)

tab[i] = (int *) calloc(M,sizeof(int));

...

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 26/29

Dynamic memory allocation for matrix (2)Dynamic memory allocation for matrix (2)

 Access to array elements:

Deallocation of memory:
tab[i][j]

 Deallocation of memory:

for (i=0; i<N; i++)

free(tab[i]);

free(tab);

...

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 27/29

Dynamic memory allocation for matrix (3)Dynamic memory allocation for matrix (3)

 N-element vector of pointers + N×M-element vector

Memory allocation: Memory allocation:

int **tab = (int **) malloc(N*sizeof(int *));

tab[0] = (int *) malloc(N*M*sizeof(int));

for (i=1; i<N; i++)

tab[i] = tab[0]+i*M;

...

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 28/29

Dynamic memory allocation for matrix (3)Dynamic memory allocation for matrix (3)

 Access to array elements:

Deallocation of memory:
tab[i][j]

 Deallocation of memory:

free(tab[0]);

free(tab);

...

Introduction to Programming in C (IS-FEE-10061S) Jarosław Forenc, PhD

Academic year 2023/2024, Workshop no. 11 29/29

End of workshop no. End of workshop no. 1111

Thank you for your attention!Thank you for your attention!

